Edit model card

arabert_cross_relevance_task6_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4618
  • Qwk: 0.0432
  • Mse: 0.4618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1111 2 0.6215 0.0598 0.6215
No log 0.2222 4 0.2878 0.1667 0.2878
No log 0.3333 6 0.3256 0.125 0.3256
No log 0.4444 8 0.2842 0.0 0.2842
No log 0.5556 10 0.2870 0.0 0.2870
No log 0.6667 12 0.3049 0.0 0.3049
No log 0.7778 14 0.2824 0.0 0.2824
No log 0.8889 16 0.2859 0.0 0.2859
No log 1.0 18 0.2773 0.0 0.2773
No log 1.1111 20 0.2760 0.0 0.2760
No log 1.2222 22 0.2840 0.0 0.2840
No log 1.3333 24 0.2933 0.0 0.2933
No log 1.4444 26 0.2910 0.0 0.2910
No log 1.5556 28 0.2848 0.0 0.2848
No log 1.6667 30 0.2936 0.0 0.2936
No log 1.7778 32 0.2964 0.0 0.2964
No log 1.8889 34 0.3217 0.0 0.3217
No log 2.0 36 0.3074 0.0 0.3074
No log 2.1111 38 0.2822 0.0 0.2822
No log 2.2222 40 0.2781 0.0 0.2781
No log 2.3333 42 0.2711 0.0 0.2711
No log 2.4444 44 0.2765 0.0 0.2765
No log 2.5556 46 0.2987 0.0 0.2987
No log 2.6667 48 0.3302 0.0 0.3302
No log 2.7778 50 0.3306 0.0 0.3306
No log 2.8889 52 0.3144 0.0 0.3144
No log 3.0 54 0.2775 0.0 0.2775
No log 3.1111 56 0.2698 0.0 0.2698
No log 3.2222 58 0.2930 0.0 0.2930
No log 3.3333 60 0.3368 0.0 0.3368
No log 3.4444 62 0.3202 0.0 0.3202
No log 3.5556 64 0.2917 0.0 0.2917
No log 3.6667 66 0.2915 0.0 0.2915
No log 3.7778 68 0.3126 0.0 0.3126
No log 3.8889 70 0.3240 0.0 0.3240
No log 4.0 72 0.3470 0.0 0.3470
No log 4.1111 74 0.3430 0.0 0.3430
No log 4.2222 76 0.3647 0.0 0.3647
No log 4.3333 78 0.3957 0.0 0.3957
No log 4.4444 80 0.3840 0.0 0.3840
No log 4.5556 82 0.3521 0.0 0.3521
No log 4.6667 84 0.3619 0.0 0.3619
No log 4.7778 86 0.3569 0.0 0.3569
No log 4.8889 88 0.3310 0.0 0.3310
No log 5.0 90 0.3382 0.0 0.3382
No log 5.1111 92 0.3534 0.0 0.3534
No log 5.2222 94 0.3516 0.0 0.3516
No log 5.3333 96 0.3252 0.0 0.3252
No log 5.4444 98 0.3135 0.0 0.3135
No log 5.5556 100 0.3412 0.0 0.3412
No log 5.6667 102 0.4012 0.0 0.4012
No log 5.7778 104 0.4263 0.0224 0.4263
No log 5.8889 106 0.3916 0.0 0.3916
No log 6.0 108 0.3330 0.0 0.3330
No log 6.1111 110 0.2996 0.0 0.2996
No log 6.2222 112 0.3013 0.0 0.3013
No log 6.3333 114 0.3241 0.0 0.3241
No log 6.4444 116 0.3864 0.0 0.3864
No log 6.5556 118 0.4424 0.0 0.4424
No log 6.6667 120 0.4730 0.0 0.4730
No log 6.7778 122 0.4565 0.0 0.4565
No log 6.8889 124 0.4114 0.0 0.4114
No log 7.0 126 0.3989 0.0 0.3989
No log 7.1111 128 0.3922 0.0 0.3922
No log 7.2222 130 0.3994 0.0 0.3994
No log 7.3333 132 0.4033 0.0 0.4033
No log 7.4444 134 0.3909 0.0 0.3909
No log 7.5556 136 0.3949 0.0 0.3949
No log 7.6667 138 0.3949 0.0 0.3949
No log 7.7778 140 0.4170 0.0 0.4170
No log 7.8889 142 0.4493 0.0224 0.4493
No log 8.0 144 0.4891 0.0432 0.4891
No log 8.1111 146 0.4976 0.0230 0.4976
No log 8.2222 148 0.4661 0.0432 0.4661
No log 8.3333 150 0.4184 0.0224 0.4184
No log 8.4444 152 0.3950 0.0 0.3950
No log 8.5556 154 0.3931 0.0 0.3931
No log 8.6667 156 0.4033 0.0224 0.4033
No log 8.7778 158 0.4222 0.0224 0.4222
No log 8.8889 160 0.4526 0.0432 0.4526
No log 9.0 162 0.4915 0.0432 0.4915
No log 9.1111 164 0.5166 0.0054 0.5166
No log 9.2222 166 0.5171 -0.0026 0.5171
No log 9.3333 168 0.5083 0.0139 0.5083
No log 9.4444 170 0.4931 0.0327 0.4931
No log 9.5556 172 0.4776 0.0432 0.4776
No log 9.6667 174 0.4695 0.0432 0.4695
No log 9.7778 176 0.4633 0.0432 0.4633
No log 9.8889 178 0.4623 0.0432 0.4623
No log 10.0 180 0.4618 0.0432 0.4618

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task6_fold3

Finetuned
(695)
this model