arabert_cross_relevance_task6_fold3
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4618
- Qwk: 0.0432
- Mse: 0.4618
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1111 | 2 | 0.6215 | 0.0598 | 0.6215 |
No log | 0.2222 | 4 | 0.2878 | 0.1667 | 0.2878 |
No log | 0.3333 | 6 | 0.3256 | 0.125 | 0.3256 |
No log | 0.4444 | 8 | 0.2842 | 0.0 | 0.2842 |
No log | 0.5556 | 10 | 0.2870 | 0.0 | 0.2870 |
No log | 0.6667 | 12 | 0.3049 | 0.0 | 0.3049 |
No log | 0.7778 | 14 | 0.2824 | 0.0 | 0.2824 |
No log | 0.8889 | 16 | 0.2859 | 0.0 | 0.2859 |
No log | 1.0 | 18 | 0.2773 | 0.0 | 0.2773 |
No log | 1.1111 | 20 | 0.2760 | 0.0 | 0.2760 |
No log | 1.2222 | 22 | 0.2840 | 0.0 | 0.2840 |
No log | 1.3333 | 24 | 0.2933 | 0.0 | 0.2933 |
No log | 1.4444 | 26 | 0.2910 | 0.0 | 0.2910 |
No log | 1.5556 | 28 | 0.2848 | 0.0 | 0.2848 |
No log | 1.6667 | 30 | 0.2936 | 0.0 | 0.2936 |
No log | 1.7778 | 32 | 0.2964 | 0.0 | 0.2964 |
No log | 1.8889 | 34 | 0.3217 | 0.0 | 0.3217 |
No log | 2.0 | 36 | 0.3074 | 0.0 | 0.3074 |
No log | 2.1111 | 38 | 0.2822 | 0.0 | 0.2822 |
No log | 2.2222 | 40 | 0.2781 | 0.0 | 0.2781 |
No log | 2.3333 | 42 | 0.2711 | 0.0 | 0.2711 |
No log | 2.4444 | 44 | 0.2765 | 0.0 | 0.2765 |
No log | 2.5556 | 46 | 0.2987 | 0.0 | 0.2987 |
No log | 2.6667 | 48 | 0.3302 | 0.0 | 0.3302 |
No log | 2.7778 | 50 | 0.3306 | 0.0 | 0.3306 |
No log | 2.8889 | 52 | 0.3144 | 0.0 | 0.3144 |
No log | 3.0 | 54 | 0.2775 | 0.0 | 0.2775 |
No log | 3.1111 | 56 | 0.2698 | 0.0 | 0.2698 |
No log | 3.2222 | 58 | 0.2930 | 0.0 | 0.2930 |
No log | 3.3333 | 60 | 0.3368 | 0.0 | 0.3368 |
No log | 3.4444 | 62 | 0.3202 | 0.0 | 0.3202 |
No log | 3.5556 | 64 | 0.2917 | 0.0 | 0.2917 |
No log | 3.6667 | 66 | 0.2915 | 0.0 | 0.2915 |
No log | 3.7778 | 68 | 0.3126 | 0.0 | 0.3126 |
No log | 3.8889 | 70 | 0.3240 | 0.0 | 0.3240 |
No log | 4.0 | 72 | 0.3470 | 0.0 | 0.3470 |
No log | 4.1111 | 74 | 0.3430 | 0.0 | 0.3430 |
No log | 4.2222 | 76 | 0.3647 | 0.0 | 0.3647 |
No log | 4.3333 | 78 | 0.3957 | 0.0 | 0.3957 |
No log | 4.4444 | 80 | 0.3840 | 0.0 | 0.3840 |
No log | 4.5556 | 82 | 0.3521 | 0.0 | 0.3521 |
No log | 4.6667 | 84 | 0.3619 | 0.0 | 0.3619 |
No log | 4.7778 | 86 | 0.3569 | 0.0 | 0.3569 |
No log | 4.8889 | 88 | 0.3310 | 0.0 | 0.3310 |
No log | 5.0 | 90 | 0.3382 | 0.0 | 0.3382 |
No log | 5.1111 | 92 | 0.3534 | 0.0 | 0.3534 |
No log | 5.2222 | 94 | 0.3516 | 0.0 | 0.3516 |
No log | 5.3333 | 96 | 0.3252 | 0.0 | 0.3252 |
No log | 5.4444 | 98 | 0.3135 | 0.0 | 0.3135 |
No log | 5.5556 | 100 | 0.3412 | 0.0 | 0.3412 |
No log | 5.6667 | 102 | 0.4012 | 0.0 | 0.4012 |
No log | 5.7778 | 104 | 0.4263 | 0.0224 | 0.4263 |
No log | 5.8889 | 106 | 0.3916 | 0.0 | 0.3916 |
No log | 6.0 | 108 | 0.3330 | 0.0 | 0.3330 |
No log | 6.1111 | 110 | 0.2996 | 0.0 | 0.2996 |
No log | 6.2222 | 112 | 0.3013 | 0.0 | 0.3013 |
No log | 6.3333 | 114 | 0.3241 | 0.0 | 0.3241 |
No log | 6.4444 | 116 | 0.3864 | 0.0 | 0.3864 |
No log | 6.5556 | 118 | 0.4424 | 0.0 | 0.4424 |
No log | 6.6667 | 120 | 0.4730 | 0.0 | 0.4730 |
No log | 6.7778 | 122 | 0.4565 | 0.0 | 0.4565 |
No log | 6.8889 | 124 | 0.4114 | 0.0 | 0.4114 |
No log | 7.0 | 126 | 0.3989 | 0.0 | 0.3989 |
No log | 7.1111 | 128 | 0.3922 | 0.0 | 0.3922 |
No log | 7.2222 | 130 | 0.3994 | 0.0 | 0.3994 |
No log | 7.3333 | 132 | 0.4033 | 0.0 | 0.4033 |
No log | 7.4444 | 134 | 0.3909 | 0.0 | 0.3909 |
No log | 7.5556 | 136 | 0.3949 | 0.0 | 0.3949 |
No log | 7.6667 | 138 | 0.3949 | 0.0 | 0.3949 |
No log | 7.7778 | 140 | 0.4170 | 0.0 | 0.4170 |
No log | 7.8889 | 142 | 0.4493 | 0.0224 | 0.4493 |
No log | 8.0 | 144 | 0.4891 | 0.0432 | 0.4891 |
No log | 8.1111 | 146 | 0.4976 | 0.0230 | 0.4976 |
No log | 8.2222 | 148 | 0.4661 | 0.0432 | 0.4661 |
No log | 8.3333 | 150 | 0.4184 | 0.0224 | 0.4184 |
No log | 8.4444 | 152 | 0.3950 | 0.0 | 0.3950 |
No log | 8.5556 | 154 | 0.3931 | 0.0 | 0.3931 |
No log | 8.6667 | 156 | 0.4033 | 0.0224 | 0.4033 |
No log | 8.7778 | 158 | 0.4222 | 0.0224 | 0.4222 |
No log | 8.8889 | 160 | 0.4526 | 0.0432 | 0.4526 |
No log | 9.0 | 162 | 0.4915 | 0.0432 | 0.4915 |
No log | 9.1111 | 164 | 0.5166 | 0.0054 | 0.5166 |
No log | 9.2222 | 166 | 0.5171 | -0.0026 | 0.5171 |
No log | 9.3333 | 168 | 0.5083 | 0.0139 | 0.5083 |
No log | 9.4444 | 170 | 0.4931 | 0.0327 | 0.4931 |
No log | 9.5556 | 172 | 0.4776 | 0.0432 | 0.4776 |
No log | 9.6667 | 174 | 0.4695 | 0.0432 | 0.4695 |
No log | 9.7778 | 176 | 0.4633 | 0.0432 | 0.4633 |
No log | 9.8889 | 178 | 0.4623 | 0.0432 | 0.4623 |
No log | 10.0 | 180 | 0.4618 | 0.0432 | 0.4618 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/arabert_cross_relevance_task6_fold3
Base model
aubmindlab/bert-base-arabertv02