Edit model card

arabert_cross_relevance_task6_fold6

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4430
  • Qwk: 0.1465
  • Mse: 0.4429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 0.7830 0.0204 0.7810
No log 0.2353 4 0.3944 0.0715 0.3940
No log 0.3529 6 0.3437 0.0480 0.3436
No log 0.4706 8 0.3309 0.1105 0.3305
No log 0.5882 10 0.2835 0.1105 0.2836
No log 0.7059 12 0.2697 0.1105 0.2702
No log 0.8235 14 0.2695 0.1185 0.2700
No log 0.9412 16 0.2715 0.1326 0.2721
No log 1.0588 18 0.2745 0.2102 0.2750
No log 1.1765 20 0.2896 0.2067 0.2899
No log 1.2941 22 0.2766 0.2206 0.2770
No log 1.4118 24 0.2712 0.2420 0.2717
No log 1.5294 26 0.2809 0.2235 0.2814
No log 1.6471 28 0.2904 0.2076 0.2908
No log 1.7647 30 0.2687 0.2352 0.2692
No log 1.8824 32 0.2581 0.2477 0.2588
No log 2.0 34 0.2565 0.2472 0.2572
No log 2.1176 36 0.2641 0.2099 0.2646
No log 2.2353 38 0.3196 0.2033 0.3198
No log 2.3529 40 0.3095 0.2076 0.3097
No log 2.4706 42 0.2662 0.2084 0.2667
No log 2.5882 44 0.2644 0.2790 0.2651
No log 2.7059 46 0.2676 0.2311 0.2682
No log 2.8235 48 0.2943 0.2347 0.2946
No log 2.9412 50 0.3231 0.2150 0.3232
No log 3.0588 52 0.3309 0.2064 0.3309
No log 3.1765 54 0.3053 0.2252 0.3056
No log 3.2941 56 0.2808 0.2266 0.2812
No log 3.4118 58 0.2831 0.2170 0.2836
No log 3.5294 60 0.2875 0.2211 0.2881
No log 3.6471 62 0.3017 0.2140 0.3022
No log 3.7647 64 0.3078 0.2125 0.3084
No log 3.8824 66 0.3215 0.2117 0.3220
No log 4.0 68 0.3285 0.2052 0.3288
No log 4.1176 70 0.3679 0.1824 0.3679
No log 4.2353 72 0.3668 0.1824 0.3668
No log 4.3529 74 0.3216 0.2135 0.3219
No log 4.4706 76 0.2935 0.2301 0.2940
No log 4.5882 78 0.2944 0.2406 0.2949
No log 4.7059 80 0.3279 0.2200 0.3282
No log 4.8235 82 0.3629 0.1977 0.3631
No log 4.9412 84 0.3823 0.1898 0.3823
No log 5.0588 86 0.3659 0.1977 0.3659
No log 5.1765 88 0.3351 0.2019 0.3353
No log 5.2941 90 0.3442 0.2019 0.3443
No log 5.4118 92 0.3693 0.1977 0.3694
No log 5.5294 94 0.3861 0.1937 0.3861
No log 5.6471 96 0.3622 0.1977 0.3624
No log 5.7647 98 0.3369 0.2023 0.3373
No log 5.8824 100 0.3520 0.1939 0.3524
No log 6.0 102 0.3764 0.1898 0.3766
No log 6.1176 104 0.4008 0.1975 0.4009
No log 6.2353 106 0.4228 0.1899 0.4229
No log 6.3529 108 0.4377 0.1725 0.4376
No log 6.4706 110 0.4032 0.1824 0.4033
No log 6.5882 112 0.3828 0.1937 0.3829
No log 6.7059 114 0.4023 0.1975 0.4023
No log 6.8235 116 0.4098 0.1650 0.4097
No log 6.9412 118 0.4555 0.1465 0.4553
No log 7.0588 120 0.5148 0.1339 0.5144
No log 7.1765 122 0.5125 0.1339 0.5122
No log 7.2941 124 0.4645 0.1465 0.4643
No log 7.4118 126 0.3966 0.1751 0.3967
No log 7.5294 128 0.3450 0.1979 0.3452
No log 7.6471 130 0.3262 0.2210 0.3265
No log 7.7647 132 0.3261 0.2210 0.3265
No log 7.8824 134 0.3438 0.1979 0.3441
No log 8.0 136 0.3772 0.2015 0.3774
No log 8.1176 138 0.4155 0.1719 0.4155
No log 8.2353 140 0.4512 0.1528 0.4511
No log 8.3529 142 0.4592 0.1404 0.4590
No log 8.4706 144 0.4422 0.1465 0.4421
No log 8.5882 146 0.4170 0.1620 0.4170
No log 8.7059 148 0.4105 0.1757 0.4105
No log 8.8235 150 0.4205 0.1592 0.4204
No log 8.9412 152 0.4328 0.1465 0.4327
No log 9.0588 154 0.4368 0.1465 0.4367
No log 9.1765 156 0.4351 0.1465 0.4350
No log 9.2941 158 0.4352 0.1465 0.4352
No log 9.4118 160 0.4333 0.1465 0.4332
No log 9.5294 162 0.4373 0.1465 0.4372
No log 9.6471 164 0.4392 0.1465 0.4391
No log 9.7647 166 0.4394 0.1465 0.4393
No log 9.8824 168 0.4416 0.1465 0.4415
No log 10.0 170 0.4430 0.1465 0.4429

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task6_fold6

Finetuned
(696)
this model