salbatarni's picture
End of training
5a003d9 verified
|
raw
history blame
6.6 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_relevance_task7_fold1
    results: []

arabert_cross_relevance_task7_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3047
  • Qwk: 0.0332
  • Mse: 0.3047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 1.2830 0.0016 1.2830
No log 0.2667 4 0.3134 0.0127 0.3134
No log 0.4 6 0.1648 0.1104 0.1648
No log 0.5333 8 0.1251 0.0517 0.1251
No log 0.6667 10 0.2224 0.0017 0.2224
No log 0.8 12 0.2590 0.0094 0.2590
No log 0.9333 14 0.1796 0.0127 0.1796
No log 1.0667 16 0.1308 0.0397 0.1308
No log 1.2 18 0.1449 0.0303 0.1449
No log 1.3333 20 0.1645 0.0288 0.1645
No log 1.4667 22 0.1859 0.0270 0.1859
No log 1.6 24 0.1923 0.0425 0.1923
No log 1.7333 26 0.1918 0.0319 0.1918
No log 1.8667 28 0.2199 0.0290 0.2199
No log 2.0 30 0.2212 0.0273 0.2212
No log 2.1333 32 0.1858 0.0273 0.1858
No log 2.2667 34 0.1779 0.0270 0.1779
No log 2.4 36 0.2133 0.0270 0.2133
No log 2.5333 38 0.2467 0.0339 0.2467
No log 2.6667 40 0.2211 0.0355 0.2211
No log 2.8 42 0.1890 0.0355 0.1890
No log 2.9333 44 0.2091 0.0270 0.2091
No log 3.0667 46 0.2659 0.0254 0.2659
No log 3.2 48 0.2479 0.0235 0.2479
No log 3.3333 50 0.2076 0.0284 0.2076
No log 3.4667 52 0.1978 0.0351 0.1978
No log 3.6 54 0.2247 0.0334 0.2247
No log 3.7333 56 0.2784 0.0319 0.2784
No log 3.8667 58 0.2815 0.0217 0.2815
No log 4.0 60 0.2597 0.0235 0.2597
No log 4.1333 62 0.2093 0.0304 0.2093
No log 4.2667 64 0.2137 0.0287 0.2137
No log 4.4 66 0.2532 0.0235 0.2532
No log 4.5333 68 0.2399 0.0251 0.2399
No log 4.6667 70 0.2137 0.0338 0.2137
No log 4.8 72 0.2516 0.0235 0.2516
No log 4.9333 74 0.2786 0.0319 0.2786
No log 5.0667 76 0.3017 0.0319 0.3017
No log 5.2 78 0.2701 0.0235 0.2701
No log 5.3333 80 0.2234 0.0301 0.2234
No log 5.4667 82 0.2231 0.0301 0.2231
No log 5.6 84 0.2419 0.0284 0.2419
No log 5.7333 86 0.2839 0.0233 0.2839
No log 5.8667 88 0.2964 0.0233 0.2964
No log 6.0 90 0.2986 0.0214 0.2986
No log 6.1333 92 0.2565 0.0317 0.2565
No log 6.2667 94 0.2203 0.0334 0.2203
No log 6.4 96 0.2553 0.0317 0.2553
No log 6.5333 98 0.3609 0.0193 0.3609
No log 6.6667 100 0.4216 0.0206 0.4216
No log 6.8 102 0.3627 0.0225 0.3627
No log 6.9333 104 0.2543 0.0317 0.2543
No log 7.0667 106 0.2003 0.0312 0.2003
No log 7.2 108 0.2014 0.0295 0.2014
No log 7.3333 110 0.2374 0.0301 0.2374
No log 7.4667 112 0.3176 0.0263 0.3176
No log 7.6 114 0.3811 0.0237 0.3811
No log 7.7333 116 0.3686 0.0285 0.3686
No log 7.8667 118 0.3010 0.0260 0.3010
No log 8.0 120 0.2467 0.0317 0.2467
No log 8.1333 122 0.2371 0.0334 0.2371
No log 8.2667 124 0.2613 0.0361 0.2613
No log 8.4 126 0.2959 0.0310 0.2959
No log 8.5333 128 0.3317 0.0225 0.3317
No log 8.6667 130 0.3288 0.0240 0.3288
No log 8.8 132 0.2998 0.0370 0.2998
No log 8.9333 134 0.2797 0.0341 0.2797
No log 9.0667 136 0.2625 0.0441 0.2625
No log 9.2 138 0.2672 0.0421 0.2672
No log 9.3333 140 0.2738 0.0421 0.2738
No log 9.4667 142 0.2892 0.0401 0.2892
No log 9.6 144 0.3017 0.0366 0.3017
No log 9.7333 146 0.3079 0.0332 0.3079
No log 9.8667 148 0.3065 0.0332 0.3065
No log 10.0 150 0.3047 0.0332 0.3047

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1