Edit model card

arabert_cross_vocabulary_task1_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8237
  • Qwk: 0.0005
  • Mse: 0.8231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.125 2 6.3728 -0.0031 6.3683
No log 0.25 4 2.4100 -0.0135 2.4074
No log 0.375 6 0.8300 0.0029 0.8281
No log 0.5 8 0.5694 0.0422 0.5684
No log 0.625 10 0.5771 0.0819 0.5758
No log 0.75 12 0.5787 0.0393 0.5780
No log 0.875 14 0.5560 0.0075 0.5555
No log 1.0 16 0.5627 -0.0083 0.5623
No log 1.125 18 0.6677 0.0 0.6674
No log 1.25 20 0.7346 0.0 0.7343
No log 1.375 22 0.6544 0.0 0.6540
No log 1.5 24 0.7414 0.0 0.7411
No log 1.625 26 0.7091 0.0 0.7088
No log 1.75 28 0.5841 0.0 0.5836
No log 1.875 30 0.5323 0.0422 0.5314
No log 2.0 32 0.5359 0.0488 0.5349
No log 2.125 34 0.5392 0.0 0.5385
No log 2.25 36 0.6346 0.0 0.6342
No log 2.375 38 0.7730 0.0 0.7727
No log 2.5 40 0.7599 0.0 0.7595
No log 2.625 42 0.6719 0.0 0.6714
No log 2.75 44 0.7595 0.0 0.7591
No log 2.875 46 0.8678 0.0202 0.8675
No log 3.0 48 0.8677 0.0151 0.8674
No log 3.125 50 0.9100 0.0193 0.9096
No log 3.25 52 1.2346 0.0466 1.2345
No log 3.375 54 1.3974 0.1074 1.3974
No log 3.5 56 1.1473 0.0657 1.1472
No log 3.625 58 0.7783 -0.0050 0.7779
No log 3.75 60 0.6393 0.0 0.6387
No log 3.875 62 0.6653 0.0 0.6648
No log 4.0 64 0.6339 0.0 0.6334
No log 4.125 66 0.6583 0.0 0.6578
No log 4.25 68 0.7357 0.0 0.7353
No log 4.375 70 0.9251 -0.0269 0.9248
No log 4.5 72 1.0004 0.0702 1.0001
No log 4.625 74 1.0757 0.0049 1.0754
No log 4.75 76 1.0881 0.0049 1.0878
No log 4.875 78 0.8102 -0.0195 0.8097
No log 5.0 80 0.6847 0.0 0.6840
No log 5.125 82 0.7337 -0.0050 0.7331
No log 5.25 84 0.7008 0.0 0.7001
No log 5.375 86 0.7016 -0.0050 0.7009
No log 5.5 88 0.7481 -0.0195 0.7475
No log 5.625 90 0.7384 0.0051 0.7377
No log 5.75 92 0.7519 0.0003 0.7511
No log 5.875 94 0.9434 0.0457 0.9429
No log 6.0 96 1.1388 0.1084 1.1387
No log 6.125 98 1.1119 0.1087 1.1118
No log 6.25 100 0.9851 0.0611 0.9849
No log 6.375 102 0.8431 0.0327 0.8426
No log 6.5 104 0.7529 -0.0242 0.7523
No log 6.625 106 0.7658 -0.0242 0.7653
No log 6.75 108 0.8717 0.0376 0.8713
No log 6.875 110 0.9321 0.0376 0.9319
No log 7.0 112 0.9103 0.0426 0.9101
No log 7.125 114 0.8699 0.0193 0.8696
No log 7.25 116 0.7446 -0.0195 0.7440
No log 7.375 118 0.6938 -0.0446 0.6931
No log 7.5 120 0.6932 -0.0446 0.6926
No log 7.625 122 0.7665 -0.0242 0.7659
No log 7.75 124 0.9012 -0.0078 0.9008
No log 7.875 126 0.9982 0.0480 0.9978
No log 8.0 128 1.0450 0.0602 1.0446
No log 8.125 130 1.0164 0.0643 1.0160
No log 8.25 132 0.9926 0.0728 0.9921
No log 8.375 134 0.9480 0.0328 0.9475
No log 8.5 136 0.9640 0.0245 0.9635
No log 8.625 138 0.9946 0.0501 0.9942
No log 8.75 140 0.9731 0.0245 0.9727
No log 8.875 142 0.9147 0.0213 0.9142
No log 9.0 144 0.8829 0.0177 0.8824
No log 9.125 146 0.8432 0.0231 0.8426
No log 9.25 148 0.8012 0.0050 0.8006
No log 9.375 150 0.7936 -0.0182 0.7929
No log 9.5 152 0.7870 -0.0182 0.7863
No log 9.625 154 0.8001 0.0050 0.7994
No log 9.75 156 0.8093 0.0050 0.8086
No log 9.875 158 0.8204 0.0005 0.8198
No log 10.0 160 0.8237 0.0005 0.8231

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_vocabulary_task1_fold1

Finetuned
(690)
this model