salbatarni's picture
Training in progress, step 61
abd5771 verified
|
raw
history blame
3.31 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
model-index:
  - name: arabert_cross_vocabulary_task1_fold3
    results: []

arabert_cross_vocabulary_task1_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6330
  • Qwk: 0.8116
  • Mse: 0.6330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0351 2 3.3598 0.0190 3.3598
No log 0.0702 4 2.4609 0.1303 2.4609
No log 0.1053 6 1.4030 0.3203 1.4030
No log 0.1404 8 1.5047 0.4056 1.5047
No log 0.1754 10 1.6841 0.5201 1.6841
No log 0.2105 12 1.2050 0.4844 1.2050
No log 0.2456 14 1.0340 0.4610 1.0340
No log 0.2807 16 0.9004 0.5199 0.9004
No log 0.3158 18 0.8944 0.7299 0.8944
No log 0.3509 20 0.7872 0.7550 0.7872
No log 0.3860 22 0.6647 0.7227 0.6647
No log 0.4211 24 0.6390 0.7315 0.6390
No log 0.4561 26 0.6404 0.7837 0.6404
No log 0.4912 28 0.8258 0.8035 0.8258
No log 0.5263 30 0.8849 0.8022 0.8849
No log 0.5614 32 0.7788 0.8146 0.7788
No log 0.5965 34 0.6878 0.7879 0.6878
No log 0.6316 36 0.6812 0.7867 0.6812
No log 0.6667 38 0.7533 0.8236 0.7533
No log 0.7018 40 0.8468 0.8151 0.8468
No log 0.7368 42 0.8501 0.8191 0.8501
No log 0.7719 44 0.8291 0.8174 0.8291
No log 0.8070 46 0.7683 0.8084 0.7683
No log 0.8421 48 0.7140 0.8190 0.7140
No log 0.8772 50 0.6780 0.8204 0.6780
No log 0.9123 52 0.6546 0.8181 0.6546
No log 0.9474 54 0.6399 0.8097 0.6399
No log 0.9825 56 0.6330 0.8116 0.6330

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1