salbatarni's picture
End of training
71381b3 verified
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_vocabulary_task5_fold4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_cross_vocabulary_task5_fold4
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5724
- Qwk: 0.8274
- Mse: 0.5724
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
| No log | 0.0323 | 2 | 4.0786 | -0.0202 | 4.0786 |
| No log | 0.0645 | 4 | 2.3283 | 0.0109 | 2.3283 |
| No log | 0.0968 | 6 | 1.2785 | 0.2841 | 1.2785 |
| No log | 0.1290 | 8 | 0.8433 | 0.4083 | 0.8433 |
| No log | 0.1613 | 10 | 1.0059 | 0.5899 | 1.0059 |
| No log | 0.1935 | 12 | 1.1298 | 0.6125 | 1.1298 |
| No log | 0.2258 | 14 | 0.8824 | 0.7014 | 0.8824 |
| No log | 0.2581 | 16 | 0.9194 | 0.7028 | 0.9194 |
| No log | 0.2903 | 18 | 0.9116 | 0.7100 | 0.9116 |
| No log | 0.3226 | 20 | 0.6668 | 0.7739 | 0.6668 |
| No log | 0.3548 | 22 | 0.4256 | 0.7812 | 0.4256 |
| No log | 0.3871 | 24 | 0.4050 | 0.7574 | 0.4050 |
| No log | 0.4194 | 26 | 0.5814 | 0.7955 | 0.5814 |
| No log | 0.4516 | 28 | 1.0279 | 0.7514 | 1.0279 |
| No log | 0.4839 | 30 | 1.0452 | 0.7607 | 1.0452 |
| No log | 0.5161 | 32 | 0.7165 | 0.8089 | 0.7165 |
| No log | 0.5484 | 34 | 0.4458 | 0.7951 | 0.4458 |
| No log | 0.5806 | 36 | 0.3735 | 0.7660 | 0.3735 |
| No log | 0.6129 | 38 | 0.3982 | 0.7985 | 0.3982 |
| No log | 0.6452 | 40 | 0.5173 | 0.8081 | 0.5173 |
| No log | 0.6774 | 42 | 0.7723 | 0.7985 | 0.7723 |
| No log | 0.7097 | 44 | 0.9254 | 0.7695 | 0.9254 |
| No log | 0.7419 | 46 | 1.0677 | 0.7448 | 1.0677 |
| No log | 0.7742 | 48 | 1.0524 | 0.7448 | 1.0524 |
| No log | 0.8065 | 50 | 0.9408 | 0.7762 | 0.9408 |
| No log | 0.8387 | 52 | 0.8100 | 0.7901 | 0.8100 |
| No log | 0.8710 | 54 | 0.7061 | 0.8033 | 0.7061 |
| No log | 0.9032 | 56 | 0.6220 | 0.8252 | 0.6220 |
| No log | 0.9355 | 58 | 0.5830 | 0.8299 | 0.5830 |
| No log | 0.9677 | 60 | 0.5721 | 0.8239 | 0.5721 |
| No log | 1.0 | 62 | 0.5724 | 0.8274 | 0.5724 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1