|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_cross_vocabulary_task7_fold6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_cross_vocabulary_task7_fold6 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4590 |
|
- Qwk: 0.6447 |
|
- Mse: 0.4579 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.0328 | 2 | 2.4310 | 0.0444 | 2.4182 | |
|
| No log | 0.0656 | 4 | 1.0755 | 0.2942 | 1.0701 | |
|
| No log | 0.0984 | 6 | 1.4087 | 0.2913 | 1.3952 | |
|
| No log | 0.1311 | 8 | 1.4088 | 0.2931 | 1.3955 | |
|
| No log | 0.1639 | 10 | 0.6928 | 0.4909 | 0.6873 | |
|
| No log | 0.1967 | 12 | 0.5750 | 0.6609 | 0.5725 | |
|
| No log | 0.2295 | 14 | 0.5006 | 0.6728 | 0.4989 | |
|
| No log | 0.2623 | 16 | 0.4822 | 0.6065 | 0.4795 | |
|
| No log | 0.2951 | 18 | 0.6545 | 0.5276 | 0.6499 | |
|
| No log | 0.3279 | 20 | 1.0487 | 0.4061 | 1.0399 | |
|
| No log | 0.3607 | 22 | 1.1184 | 0.3952 | 1.1077 | |
|
| No log | 0.3934 | 24 | 1.0170 | 0.4299 | 1.0071 | |
|
| No log | 0.4262 | 26 | 0.5774 | 0.5919 | 0.5737 | |
|
| No log | 0.4590 | 28 | 0.4451 | 0.7458 | 0.4443 | |
|
| No log | 0.4918 | 30 | 0.4414 | 0.7776 | 0.4412 | |
|
| No log | 0.5246 | 32 | 0.4240 | 0.7423 | 0.4235 | |
|
| No log | 0.5574 | 34 | 0.4446 | 0.6969 | 0.4439 | |
|
| No log | 0.5902 | 36 | 0.6573 | 0.5608 | 0.6550 | |
|
| No log | 0.6230 | 38 | 0.7881 | 0.4856 | 0.7846 | |
|
| No log | 0.6557 | 40 | 0.7588 | 0.5118 | 0.7557 | |
|
| No log | 0.6885 | 42 | 0.6330 | 0.5988 | 0.6310 | |
|
| No log | 0.7213 | 44 | 0.5004 | 0.6314 | 0.4993 | |
|
| No log | 0.7541 | 46 | 0.4319 | 0.6887 | 0.4312 | |
|
| No log | 0.7869 | 48 | 0.4075 | 0.7028 | 0.4070 | |
|
| No log | 0.8197 | 50 | 0.4010 | 0.7041 | 0.4005 | |
|
| No log | 0.8525 | 52 | 0.3999 | 0.7089 | 0.3994 | |
|
| No log | 0.8852 | 54 | 0.4118 | 0.6952 | 0.4111 | |
|
| No log | 0.9180 | 56 | 0.4319 | 0.6733 | 0.4310 | |
|
| No log | 0.9508 | 58 | 0.4484 | 0.6528 | 0.4474 | |
|
| No log | 0.9836 | 60 | 0.4590 | 0.6447 | 0.4579 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|