File size: 4,820 Bytes
b7b782c
 
 
 
 
 
 
 
 
b1d768b
b7b782c
 
 
 
 
009c6b5
b7b782c
 
 
 
 
009c6b5
902f4e6
009c6b5
a59cce7
 
 
 
 
 
 
 
 
009c6b5
a59cce7
009c6b5
a59cce7
009c6b5
 
a59cce7
009c6b5
a59cce7
009c6b5
 
a59cce7
009c6b5
a59cce7
009c6b5
 
a59cce7
009c6b5
a59cce7
009c6b5
 
a59cce7
009c6b5
a59cce7
009c6b5
 
a59cce7
009c6b5
a59cce7
009c6b5
b7b782c
 
 
 
 
 
 
 
 
902f4e6
 
 
 
 
b7b782c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902f4e6
b7b782c
 
 
 
 
902f4e6
 
 
 
 
 
 
 
 
 
b7b782c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
base_model: t5-small
model-index:
- name: t5-small-finetuned-samsum-en
  results:
  - task:
      type: text2text-generation
      name: Sequence-to-sequence Language Modeling
    dataset:
      name: samsum
      type: samsum
      args: samsum
    metrics:
    - type: rouge
      value: 44.3313
      name: Rouge1
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
    metrics:
    - type: rouge
      value: 40.0386
      name: ROUGE-1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmRlMjZmNjQyYWQ5MjcyM2M2MzUwMjk5ZTQxOTg3NzY1NjAxY2FkNzY5OGI2YjcxYTg1Y2M1Y2M2NDM2YmI1YSIsInZlcnNpb24iOjF9.xxrRepLefbFAUWkOJwOenMuwQ8g4i2QkEUgB_d1YsAv2aRRQd0vPfiGCMltGEtCxqrgQ6vmndOlkXIJhCPV9CQ
    - type: rouge
      value: 15.8501
      name: ROUGE-2
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ4ZDQ0OTM2ZjI3NGExYWRjNWNjNTYwNjA0YWE0NWVkODJmODAwZTYzZjU3NzVhNjRiM2Y3ZDFhYjIwMTcxOSIsInZlcnNpb24iOjF9.UnymHQUy2s5P8yNUkFRhj6drPkKviYUNN2yB9E1KvYssNpRWnUbD5X_cVfYGWXVLPrtYe9dc-f7vSvm2Z1ZtDA
    - type: rouge
      value: 31.8084
      name: ROUGE-L
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTllNjQ2MGRjMTJkNmI3OWI5MTNmNWJjNmUyMTU1ZjkxYzkyNDg4MWI2MGU1NWI5NmZhMTFjNjE4ZTI5M2MyMiIsInZlcnNpb24iOjF9.rVGbelDJoVmcTD6OOQ7O8C_4LhrMMuYUniY_hAmmgZ8kU_wgtApwi6Ms1sgzqtvbF0cDHaLxejE9XPZ8ZDZMAA
    - type: rouge
      value: 36.0888
      name: ROUGE-LSUM
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQyNmZmMjFkZTY2MDhjZmIzZDBkM2ZkYzUxZTcxMTcwMDVjMDdiMzljMjU2NDA5OTUxZTEwYzQwZjg2NDJmMiIsInZlcnNpb24iOjF9.ZEBUBcPLCURLXPN5upXDHaIVu_ilUEyvZd81nnppZCWEuULyp30jcpmzLFb91v0WwRHMDPIjPl0hlckzq71ICw
    - type: loss
      value: 2.1917073726654053
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjA0MDk3MWZiMDgxMDlkZDFjY2UwODM0MTk4MmY2NzlkNThmYTA0ODk5MzgyZWQwYjVlZGFlZmJmNjA2NDA2ZSIsInZlcnNpb24iOjF9.Wc_5Wpf_Wa0Xm0A7w2EYnF1_eQ-2QU_v6eXr8SHveBszH5YhZBW6GS3yKslVVKKIaAGSGKtLIHzMW1H-NqqNDA
    - type: gen_len
      value: 18.1074
      name: gen_len
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFlMmU0MTAyMDM5M2UyZDA2N2U4MjQ3MjhjYjdkOGY1ODdlNDY1NWY3NTQ3MzBhOWE3OTk2ZGU3ZTYyNjU1ZCIsInZlcnNpb24iOjF9.Ob1cLE1iYpV00ae1RYRIUNZz7V-x8IYTcU6ofR5gf07PdRqfiOgZtpV0tN3yM0_nyAJI71J8fnC6yWq10Y0HBw
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-samsum-en

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9335
- Rouge1: 44.3313
- Rouge2: 20.71
- Rougel: 37.221
- Rougelsum: 40.9603

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.4912        | 1.0   | 300  | 1.9043          | 44.1517 | 20.0186 | 36.6053 | 40.5164   |
| 1.5055        | 2.0   | 600  | 1.8912          | 44.1473 | 20.4456 | 37.069  | 40.6714   |
| 1.4852        | 3.0   | 900  | 1.8986          | 44.7536 | 20.8646 | 37.525  | 41.2189   |
| 1.4539        | 4.0   | 1200 | 1.9136          | 44.2144 | 20.3446 | 37.1088 | 40.7581   |
| 1.4262        | 5.0   | 1500 | 1.9215          | 44.2656 | 20.6044 | 37.3267 | 40.9469   |
| 1.4118        | 6.0   | 1800 | 1.9247          | 43.8793 | 20.4663 | 37.0614 | 40.6065   |
| 1.3987        | 7.0   | 2100 | 1.9256          | 43.9981 | 20.2703 | 36.7856 | 40.6354   |
| 1.3822        | 8.0   | 2400 | 1.9316          | 43.9732 | 20.4559 | 36.8039 | 40.5784   |
| 1.3773        | 9.0   | 2700 | 1.9314          | 44.3075 | 20.5435 | 37.0457 | 40.832    |
| 1.3795        | 10.0  | 3000 | 1.9335          | 44.3313 | 20.71   | 37.221  | 40.9603   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1