metadata
base_model: saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:SoftmaxLoss
widget:
- source_sentence: ilustracion,diseño ux uidiseño ux
sentences:
- >-
Create AI-generated art using NightCafe. Apply styles and techniques to
customize artwork . Produce a digital art portfolio showcasing AI
creativity
- >-
The nature of discrete-time signals. Discrete-time signals are vectors
in a vector space. Discrete-time signals can be analyzed in the
frequency domain via the Fourier transform
- >-
Describe software engineering, Software Development Lifecycle (SDLC),
and software development tools, technologies and stacks. . List
different types of programming languages and create basic programming
constructs such as loops and conditions using Python. . Outline
approaches to application architecture and design, patterns, and
deployment architectures. . Summarize the skills required in software
engineering and describe the career options it provides.
- source_sentence: profesional
sentences:
- >-
Create a Facebook Prophet Machine learning model & Forecast the price
of Bitcoin for the future 30 days. Learn to Visualize Bitcoin using
Plotly Express. Learn to Extract Financial Data and Analyze it using
Google Sheets
- >-
What Industry 4.0 is and what factors have enabled the IIoT.. Key skills
to develop to be employed in the IIoT space.. What platforms are, and
also market information on Software and Services.. What the top
application areas are (examples include manufacturing and oil & gas).
- Writing
- source_sentence: ilustracion,diseño ux uidiseño ux
sentences:
- Creativity, Problem Solving, Writing
- Anatomy of the Upper and Lower Extremities
- >-
Evaluate the performance of a classifier using visual diagnostic tools
from Yellowbrick. Diagnose and handle class imbalance problems
- source_sentence: Maestría en educación
sentences:
- >-
Explain the seminal ideas leading to the birth of AI, the major
difficulties and how the international community overtook them..
Describe what AI is today in terms of goals, scientific community,
companies’ interests. Describe the taxonomy of the know-how on AI in
terms of techniques, software and hardware methodologies. . Explain the
need for national strategies on AI and identify the major Italian and
European players on AI
- >-
How a hardware component can be adapted at runtime to better respond to
users/environment needs using FPGAs
- >-
A framework to evaluate DeFi risk; Environmental implications of
cryptocurrency; and winners and losers in the future of finance.
- source_sentence: ilustracion,diseño ux uidiseño ux
sentences:
- Planning
- >-
1. Transform numbers between number bases and perform arithmetic in
number bases . 2. Identify, describe and compute sequences of numbers
and their sums. . 3. Represent and describe space numerically using
coordinates and graphs.. 4. Study, represent and describe variations of
quantities via functions and their graphs.
- >-
Create PivotTables to assess specific relationships within the data..
Create line, bar, and pie charts to present the information from the
PivotTables.. Compose a dashboard with the charts and tables created to
present a global picture of the data.
SentenceTransformer based on saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU-train-paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'ilustracion,diseño ux uidiseño ux',
'Create PivotTables to assess specific relationships within the data.. Create line, bar, and pie charts to present the information from the PivotTables.. Compose a dashboard with the charts and tables created to present a global picture of the data.',
'1. Transform numbers between number bases and perform arithmetic in number bases . 2. Identify, describe and compute sequences of numbers and their sums. . 3. Represent and describe space numerically using coordinates and graphs.. 4. Study, represent and describe variations of quantities via functions and their graphs.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 100 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 3 tokens
- mean: 12.47 tokens
- max: 26 tokens
- min: 3 tokens
- mean: 46.48 tokens
- max: 128 tokens
- 0: ~39.00%
- 1: ~24.00%
- 2: ~37.00%
- Samples:
sentence1 sentence2 label ilustracion,diseño ux ui, sdiseño ux
The Ancient Greeks
2
Marketing digital, Bachiller
The Modern and the Postmodern (Part 1)
2
profesional
Writing
1
- Loss:
SoftmaxLoss
Training Hyperparameters
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}