saribasmetehan's picture
Update README.md
9b5f6bb verified
|
raw
history blame
2.22 kB
metadata
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-base-turkish-sentiment-analysis
    results: []
language:
  - tr
datasets:
  - winvoker/turkish-sentiment-analysis-dataset

bert-base-turkish-sentiment-analysis

This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on an winvoker/turkish-sentiment-analysis-dataset (The shuffle function was used with a training dataset of 10,000 data points and a test dataset of 2,000 points.). It achieves the following results on the evaluation set:

  • Loss: 0.2458
  • Accuracy: 0.962

Model description

  • "Positive" : LABEL_1
  • "Notr" : LABEL_0
  • "Negative" : LABEL_2
  • "Fine-Tuning Process" : https://github.com/saribasmetehan/Transformers-Library/blob/main/Turkish_Text_Classifiaction_Fine_Tuning_PyTorch.ipynb

Example

from transformers import pipeline

model_id = "saribasmetehan/bert-base-turkish-sentiment-analysis"
classifer = pipeline("text-classification",model = model_id)
preds= classifer(text)
print(preds)

#[{'label': 'LABEL_2', 'score': 0.7510055303573608}]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1902 1.0 625 0.1629 0.9575
0.1064 2.0 1250 0.1790 0.96
0.0631 3.0 1875 0.2358 0.96
0.0146 4.0 2500 0.2458 0.962

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1