metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: reward-model-out
results: []
reward-model-out
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.6737
- eval_accuracy: 0.6041
- eval_precision: 0.6041
- eval_recall: 1.0
- eval_f1: 0.7532
- eval_runtime: 23.9877
- eval_samples_per_second: 32.85
- eval_steps_per_second: 5.503
- epoch: 0.35
- step: 4500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1