llama-airo-3
Details
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the jondurbin/airoboros-3.2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8437
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1845 | 0.0 | 1 | 1.1821 |
0.9328 | 0.25 | 114 | 0.9228 |
0.8961 | 0.5 | 228 | 0.8713 |
0.824 | 0.75 | 342 | 0.8437 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Eval Results
Benchmark | Model | agieval | gpt4all | bigbench | truthfulqa | Average |
---|---|---|---|---|---|---|
nous | llama-airo-3 | 36.59 | 72.24 | 39.26 | 56.3 | 51.1 |
nous | meta-llama/Meta-Llama-3-8B | 31.1 | 69.95 | 36.7 | 43.91 | 45.42 |
Benchmark | Model | winogrande | arc | gsm8k | mmlu | truthfulqa | hellaswag | Average |
---|---|---|---|---|---|---|---|---|
openllm | llama-airo-3 | 78.22 | 61.01 | 56.33 | 64.79 | 56.35 | 82.42 | 66.52 |
openllm | Meta-Llama-3-8B | 77.58 | 57.51 | 50.87 | 65.04 | 43.93 | 82.09 | 62.84 |
Detailed Results: https://github.com/saucam/model_evals/tree/main/saucam/llama-airo-3
- Downloads last month
- 8
Model tree for saucam/llama-airo-3
Base model
meta-llama/Meta-Llama-3-8B