saxenagauravhf's picture
End of training
46458d7 verified
|
raw
history blame
2.93 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: None
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.84

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7755
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2322 1.0 57 2.1521 0.37
1.7413 2.0 114 1.6606 0.47
1.3543 3.0 171 1.2698 0.69
0.9436 4.0 228 1.0440 0.71
0.7976 5.0 285 0.8338 0.79
0.6615 6.0 342 0.6933 0.84
0.5743 7.0 399 0.6180 0.84
0.4349 8.0 456 0.5931 0.84
0.2949 9.0 513 0.5794 0.85
0.2274 10.0 570 0.5901 0.84
0.1067 11.0 627 0.6496 0.81
0.104 12.0 684 0.6921 0.82
0.0781 13.0 741 0.6653 0.83
0.0245 14.0 798 0.6621 0.84
0.0144 15.0 855 0.7015 0.82
0.0104 16.0 912 0.7109 0.85
0.007 17.0 969 0.7472 0.84
0.0163 18.0 1026 0.7603 0.86
0.0039 19.0 1083 0.7710 0.85
0.0035 20.0 1140 0.7755 0.84

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1