license: other
tags:
- generated_from_keras_callback
model-index:
- name: sayakpaul/mit-b0-finetuned-sidewalks
results: []
sayakpaul/mit-b0-finetuned-sidewalks
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.4936
- Validation Loss: 0.6299
- Validation Mean Iou: 0.2980
- Validation Mean Accuracy: 0.3599
- Validation Overall Accuracy: 0.8264
- Validation Per Category Iou: [0. 0.66237142 0.83413529 0.50181208 0.52374508 0.34163702 nan 0.35933641 0.43258492 0. 0.76814068 0.
nan 0. 0.49822203 0. 0.
0.65539745 0. 0.3955574 0.32740018 0. nan 0. 0.31514128 0.04382747 0. 0.84497596 0.79425761 0.89798116 0.00201253 0.18109898 0.15596963 0. ]
- Validation Per Category Accuracy: [0. 0.72498823 0.94241029 0.63156495 0.72628664 0.44784858 nan 0.50327208 0.59434829 0. 0.91352866 0.
nan 0. 0.62105434 0. 0.
0.90132969 0. 0.4624487 0.42016669 0. nan 0. 0.37948533 0.04393027 0. 0.94520928 0.88447616 0.94729824 0.00247937 0.23226938 0.19132714 0. ]
- Epoch: 6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch |
---|---|---|---|---|---|---|---|
1.5309 | 0.9380 | 0.1674 | 0.2153 | 0.7545 | [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04 | ||
3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02 | |||||||
5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00 | |||||||
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00 | |||||||
1.50378244e-01 1.75413833e-02 0.00000000e+00 nan | |||||||
0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00 | |||||||
7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00 | |||||||
0.00000000e+00 7.43899822e-03 0.00000000e+00] | [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04 | ||||||
4.09438347e-01 1.09468057e-01 nan 3.05932982e-02 | |||||||
5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00 | |||||||
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00 | |||||||
1.61194155e-01 1.77691783e-02 0.00000000e+00 nan | |||||||
0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00 | |||||||
9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00 | |||||||
0.00000000e+00 7.77243386e-03 0.00000000e+00] | 0 | ||||||
0.8850 | 0.7741 | 0.2215 | 0.2711 | 0.7807 | [0. 0.56319416 0.79436978 0.22447649 0.37746306 0.2182132 |
nan 0.17433499 0.35240193 0. 0.64391654 0.
nan 0. 0. 0. 0.
0.61824159 0. 0.36925143 0.09610409 0. nan 0. 0.23049759 0. 0. 0.79662258 0.72121144 0.85940151 0. 0.00144295 0.04769959 0. ] | [0. 0.7334003 0.94650286 0.24751216 0.4478931 0.27208929 nan 0.22448353 0.45667969 0. 0.92555657 0. 0. nan 0. 0. 0. 0. 0.85871282 0. 0.43579563 0.09928831 0. nan 0. 0.25660062 0. 0. 0.93127726 0.85151776 0.9323404 0. 0.00144459 0.05442322 0. ] | 1 | | 0.7280 | 0.6948 | 0.2608 | 0.3178 | 0.8009 | [0. 0.5833859 0.81088427 0.37870695 0.42920979 0.26901769 nan 0.26967864 0.37309309 0. 0.73143999 0. 0. nan 0. 0.30875952 0. 0. 0.64460152 0. 0.36681761 0.20754432 0. nan 0. 0.27251923 0.01267829 0. 0.82057447 0.76705857 0.86538224 0. 0.13369659 0.09996937 0. ] | [0. 0.71016102 0.95278314 0.44786052 0.50520329 0.32109583 nan 0.37049571 0.63857903 0. 0.88589428 0. 0. nan 0. 0.34012586 0. 0. 0.88972948 0. 0.49551485 0.25354461 0. nan 0. 0.3309279 0.01267829 0. 0.93305477 0.86649237 0.94355496 0. 0.14937745 0.12218876 0. ] | 2 | | 0.6505 | 0.6601 | 0.2774 | 0.3400 | 0.8158 | [0. 0.67274147 0.83098512 0.46721789 0.48492165 0.28810209 nan 0.30676731 0.41116935 0. 0.73679658 0. 0. nan 0. 0.47421792 0. 0. 0.66232704 0. 0.40729478 0.27226345 0. nan 0. 0.22211219 0.00310618 0. 0.81170746 0.73786496 0.88368738 0. 0.07716099 0.12776685 0. ] | [0. 0.80048159 0.93309497 0.558633 0.56439564 0.38053253 nan 0.46424754 0.60183499 0. 0.92479351 0. 0. nan 0. 0.60493457 0. 0. 0.88399244 0. 0.55428873 0.34754253 0. nan 0. 0.25438648 0.00310618 0. 0.90931833 0.91190458 0.94609539 0. 0.08323588 0.15250888 0. ] | 3 | | 0.5810 | 0.6610 | 0.2893 | 0.3501 | 0.8173 | [0. 0.64601276 0.81866457 0.46535767 0.50543168 0.28373075 nan 0.33004533 0.40404147 0. 0.76223358 0. 0. nan 0. 0.52641725 0. 0. 0.65767205 0. 0.39175791 0.25442534 0. nan 0. 0.30521727 0.03951998 0. 0.82740493 0.75297779 0.88342457 0. 0.20580056 0.19670152 0. ] | [0. 0.73558164 0.95660246 0.55532275 0.61966264 0.32151473 nan 0.47707119 0.54010289 0. 0.91394179 0. 0. nan 0. 0.63758616 0. 0. 0.88501875 0. 0.56845175 0.29123233 0. nan 0. 0.38980592 0.03987322 0. 0.92751577 0.84695264 0.93293488 0. 0.32582376 0.23722217 0. ] | 4 | | 0.5288 | 0.6364 | 0.3033 | 0.3717 | 0.8260 | [0. 0.64487768 0.8377146 0.48707167 0.50884928 0.34176886 nan 0.34887555 0.45218372 0. 0.75715898 0. 0. nan 0. 0.5222127 0. 0. 0.69808156 0. 0.42644563 0.35474225 0. nan 0. 0.28867161 0.03742875 0. 0.83332433 0.7818028 0.88638015 0.00137015 0.2124537 0.28445749 0. ] | [0. 0.74189035 0.92893266 0.625763 0.62296571 0.54003942 nan 0.49591369 0.64509343 0. 0.92976992 0. 0. nan 0. 0.66209669 0. 0. 0.86461114 0. 0.54041026 0.4796133 0. nan 0. 0.33899822 0.03746434 0. 0.92987636 0.92582211 0.96099073 0.00151698 0.26040449 0.36377671 0. ] | 5 | | 0.4936 | 0.6299 | 0.2980 | 0.3599 | 0.8264 | [0. 0.66237142 0.83413529 0.50181208 0.52374508 0.34163702 nan 0.35933641 0.43258492 0. 0.76814068 0. 0. nan 0. 0.49822203 0. 0. 0.65539745 0. 0.3955574 0.32740018 0. nan 0. 0.31514128 0.04382747 0. 0.84497596 0.79425761 0.89798116 0.00201253 0.18109898 0.15596963 0. ] | [0. 0.72498823 0.94241029 0.63156495 0.72628664 0.44784858 nan 0.50327208 0.59434829 0. 0.91352866 0. 0. nan 0. 0.62105434 0. 0. 0.90132969 0. 0.4624487 0.42016669 0. nan 0. 0.37948533 0.04393027 0. 0.94520928 0.88447616 0.94729824 0.00247937 0.23226938 0.19132714 0. ] | 6 |
Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.1