nanogpt_test / model.py
sayanbanerjee32's picture
Upload folder using huggingface_hub
ef65453 verified
raw
history blame
5.3 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, config, head_size):
super().__init__()
self.key = nn.Linear(config.n_embed, head_size, bias=False)
self.query = nn.Linear(config.n_embed, head_size, bias=False)
self.value = nn.Linear(config.n_embed, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(config.block_size, config.block_size)))
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x) #(B, T, head_size)
q = self.query(x) #(B, T, head_size)
wei = q @ k.transpose(-2, -1) * C**-0.5 #
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, config, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(config, head_size) for _ in range(config.n_head)])
self.proj = nn.Linear(config.n_embed, config.n_embed)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.net = nn.Sequential(
nn.Linear(config.n_embed, 4 * config.n_embed),
nn.ReLU(),
nn.Linear(4 * config.n_embed, config.n_embed),
nn.Dropout(config.dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, config):
super().__init__()
head_size = config.n_embed // config.n_head
self.sa = MultiHeadAttention(config, head_size)
self.ffwd = FeedForward(config)
self.ln1 = nn.LayerNorm(config.n_embed)
self.ln2 = nn.LayerNorm(config.n_embed)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
@dataclass
class ModelConfig:
block_size: int = 256
vocab_size: int = 50304
n_layer: int = 6
n_head: int = 6
n_embed: int = 384
dropout: float = 0.2
class BigramLanguageModel(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embed)
self.position_embedding_table = nn.Embedding(config.block_size, config.n_embed)
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
# nn.Sequential(
# Block(n_embed, n_head=4),
# Block(n_embed, n_head=4),
# Block(n_embed, n_head=4),
# nn.LayerNorm(n_embed),
# )
self.ln_f = nn.LayerNorm(config.n_embed) # final layer norm
# self.sa_heads = MultiHeadAttention(4, n_embed//4) # 4 of 8 dimensional self attention
# self.ffwd = FeedForward(n_embed)
self.lm_head = nn.Linear(config.n_embed, config.vocab_size)
def forward(self, idx, targets= None):
B, T = idx.shape
# idx and targets are both (B, T) tensor of integers
tok_emb = self.token_embedding_table(idx) #(B, T, C = channels)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) #(T, C)
x = tok_emb + pos_emb #(B, T, C)
# x = self.sa_heads(x) #apply one self attention head
# x = self.ffwd(x)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x) #(B, T, Cw)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to last block_size token
idx_cond = idx[:, -self.config.block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] / temperature # becomes (B, C)
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1)
return idx