PPO Agent playing Pendulum-v1
This is a trained model of a PPO agent playing Pendulum-v1 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga sb3 -f logs/
python enjoy.py --algo ppo --env Pendulum-v1 -f logs/
Training (with the RL Zoo)
python train.py --algo ppo --env Pendulum-v1 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga sb3
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
# Create the environment
env_id = "Pendulum-v1"
env = make_vec_env(env_id, n_envs=1)
# Instantiate the agent
model = PPO(
"MlpPolicy",
env,
gamma=0.98,
# Using https://proceedings.mlr.press/v164/raffin22a.html
use_sde=True,
sde_sample_freq=4,
learning_rate=1e-3,
verbose=1,
)
# Train the agent
model.learn(total_timesteps=int(1e5))
Hyperparameters
OrderedDict([('clip_range', 0.2),
('ent_coef', 0.0),
('gae_lambda', 0.95),
('gamma', 0.9),
('learning_rate', 0.001),
('n_envs', 4),
('n_epochs', 10),
('n_steps', 1024),
('n_timesteps', 100000.0),
('policy', 'MlpPolicy'),
('sde_sample_freq', 4),
('use_sde', True),
('normalize', False)])
- Downloads last month
- 83
Evaluation results
- mean_reward on Pendulum-v1self-reported-230.42 +/- 142.54