araffin commited on
Commit
7e1fcbf
1 Parent(s): cbfe9c4

Initial Commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -272.21 +/- 159.73
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -20,31 +20,47 @@ model-index:
20
  type: Pendulum-v1
21
  ---
22
 
23
- # **PPO** Agent playing **Pendulum-v1**
24
- This is a trained model of a **PPO** agent playing **Pendulum-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
-
26
- ## Usage (with Stable-baselines3)
27
- ```python
28
- from stable_baselines3 import PPO
29
- from stable_baselines3.common.env_util import make_vec_env
 
30
 
31
- # Create the environment
32
- env_id = "Pendulum-v1"
33
- env = make_vec_env(env_id, n_envs=1)
34
 
35
- # Instantiate the agent
36
- model = PPO(
37
- "MlpPolicy",
38
- env,
39
- gamma=0.98,
40
- use_sde=True,
41
- sde_sample_freq=4,
42
- learning_rate=1e-3,
43
- verbose=1,
44
- )
45
 
46
- # Train the agent
47
- model.learn(total_timesteps=int(1e5))
 
 
 
 
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  ```
50
-
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -230.42 +/- 142.54
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
20
  type: Pendulum-v1
21
  ---
22
 
23
+ # **PPO** Agent playing **Pendulum-v1**
24
+ This is a trained model of a **PPO** agent playing **Pendulum-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
 
32
+ ## Usage (with SB3 RL Zoo)
 
 
33
 
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env Pendulum-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo ppo --env Pendulum-v1 -f logs/
42
+ ```
 
43
 
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env Pendulum-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga sb3
49
+ ```
50
 
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('clip_range', 0.2),
54
+ ('ent_coef', 0.0),
55
+ ('gae_lambda', 0.95),
56
+ ('gamma', 0.9),
57
+ ('learning_rate', 0.001),
58
+ ('n_envs', 4),
59
+ ('n_epochs', 10),
60
+ ('n_steps', 1024),
61
+ ('n_timesteps', 100000.0),
62
+ ('policy', 'MlpPolicy'),
63
+ ('sde_sample_freq', 4),
64
+ ('use_sde', True),
65
+ ('normalize', False)])
66
  ```
 
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - env
5
+ - Pendulum-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs
18
+ - - log_interval
19
+ - -1
20
+ - - n_eval_envs
21
+ - 10
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - -1
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - 2
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 620965731
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - false
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - clip_range
3
+ - 0.2
4
+ - - ent_coef
5
+ - 0.0
6
+ - - gae_lambda
7
+ - 0.95
8
+ - - gamma
9
+ - 0.9
10
+ - - learning_rate
11
+ - 0.001
12
+ - - n_envs
13
+ - 4
14
+ - - n_epochs
15
+ - 10
16
+ - - n_steps
17
+ - 1024
18
+ - - n_timesteps
19
+ - 100000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - sde_sample_freq
23
+ - 4
24
+ - - use_sde
25
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Pendulum-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:00aadf63e4759008a054ce7cc1f32d01d6b53f8dfcf70af0a19af5b917a2eb2b
3
- size 134677
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09e61dbf45ef98ad5f8a615b430144f5b1e7233f97ec304aba079920996eb17
3
+ size 139074
ppo-Pendulum-v1/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.1a5
 
1
+ 1.5.1a6
ppo-Pendulum-v1/data CHANGED
@@ -4,85 +4,85 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f74713728c0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7471372950>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74713729e0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7471372a70>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f7471372b00>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f7471372b90>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7471372c20>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f7471372cb0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7471372d40>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7471372dd0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7471372e60>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f7471349390>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
  "dtype": "float32",
27
- "_shape": [
28
- 3
29
- ],
30
  "low": "[-1. -1. -8.]",
31
  "high": "[1. 1. 8.]",
32
  "bounded_below": "[ True True True]",
33
  "bounded_above": "[ True True True]",
34
- "_np_random": null
 
 
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.box.Box'>",
38
- ":serialized:": "gAWVWQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
39
  "dtype": "float32",
40
- "_shape": [
41
- 1
42
- ],
43
  "low": "[-2.]",
44
  "high": "[2.]",
45
  "bounded_below": "[ True]",
46
  "bounded_above": "[ True]",
47
- "_np_random": null
 
 
 
48
  },
49
- "n_envs": 1,
50
- "num_timesteps": 100352,
51
  "_total_timesteps": 100000,
52
  "_num_timesteps_at_start": 0,
53
- "seed": null,
54
  "action_noise": null,
55
- "start_time": 1651656807.660387,
56
- "learning_rate": 0.001,
 
 
 
57
  "tensorboard_log": null,
58
  "lr_schedule": {
59
  ":type:": "<class 'function'>",
60
- ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
- },
62
- "_last_obs": {
63
- ":type:": "<class 'numpy.ndarray'>",
64
- ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHnwfz9RULK8EVDfvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
65
  },
 
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
- ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": true,
73
  "sde_sample_freq": 4,
74
- "_current_progress_remaining": -0.0035199999999999676,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI16IFaFsdF8CUhpRSlIwBbJRLyIwBdJRHQFuaGGmDUVl1fZQoaAZoCWgPQwj1gk9zclRywJSGlFKUaBVLyGgWR0BbpQtapxWDdX2UKGgGaAloD0MIC/Dd5s00d8CUhpRSlGgVS8hoFkdAW67fl6qsEXV9lChoBmgJaA9DCGXjwRa7hSLAlIaUUpRoFUvIaBZHQFu3/jbSJCV1fZQoaAZoCWgPQwhbQj7oWcFxwJSGlFKUaBVLyGgWR0BbwLVe8f3fdX2UKGgGaAloD0MIFEGch1OacMCUhpRSlGgVS8hoFkdAW8noV2zOX3V9lChoBmgJaA9DCIMT0a+t/wbAlIaUUpRoFUvIaBZHQFvSftQbdad1fZQoaAZoCWgPQwglPQytzrlgwJSGlFKUaBVLyGgWR0Bb2vXK8tf5dX2UKGgGaAloD0MInInpQmxrdcCUhpRSlGgVS8hoFkdAXCzm9xp+MXV9lChoBmgJaA9DCKqbi7/t1XnAlIaUUpRoFUvIaBZHQFw4OQhfShJ1fZQoaAZoCWgPQwhfJ/VlaWJfwJSGlFKUaBVLyGgWR0BcQsDSw4bTdX2UKGgGaAloD0MIPNhit8+RX8CUhpRSlGgVS8hoFkdAXE0QXhwVCXV9lChoBmgJaA9DCISezapPT2DAlIaUUpRoFUvIaBZHQFxWoVEd/8V1fZQoaAZoCWgPQwg10HzOXV5wwJSGlFKUaBVLyGgWR0BcX/5LytmudX2UKGgGaAloD0MIRbjJqDLwb8CUhpRSlGgVS8hoFkdAXGkAwPAfuHV9lChoBmgJaA9DCKMjufwn64PAlIaUUpRoFUvIaBZHQFxyG21D0Dl1fZQoaAZoCWgPQwhy/iYUoo1wwJSGlFKUaBVLyGgWR0BceuHBUJfIdX2UKGgGaAloD0MIAYV6+sgTeMCUhpRSlGgVS8hoFkdAXIObkOqeb3V9lChoBmgJaA9DCIeKcf4mu3DAlIaUUpRoFUvIaBZHQFzXGHYYixF1fZQoaAZoCWgPQwgCZOjYQYJvwJSGlFKUaBVLyGgWR0Bc4p8v24/edX2UKGgGaAloD0MIfQbUm5Gcd8CUhpRSlGgVS8hoFkdAXO0AFPi1iXV9lChoBmgJaA9DCE4qGmu/fHDAlIaUUpRoFUvIaBZHQFz2ppeu3c51fZQoaAZoCWgPQwiM+E7MejEDwJSGlFKUaBVLyGgWR0Bc//uLJjlQdX2UKGgGaAloD0MI81XysbsADsCUhpRSlGgVS8hoFkdAXQlMmF8G93V9lChoBmgJaA9DCHDurx73fV7AlIaUUpRoFUvIaBZHQF0R9Ba9sad1fZQoaAZoCWgPQwicNuM0RCJwwJSGlFKUaBVLyGgWR0BdGpwsGxD9dX2UKGgGaAloD0MIS5ARUOEJX8CUhpRSlGgVS8hoFkdAXSNId2gWanV9lChoBmgJaA9DCCCzs+gd4G/AlIaUUpRoFUvIaBZHQF0rqoZQ53l1fZQoaAZoCWgPQwiOyHcpNaVwwJSGlFKUaBVLyGgWR0BdM8NMGorGdX2UKGgGaAloD0MIeEKvPwnpc8CUhpRSlGgVS8hoFkdAXYZ5Qgs9S3V9lChoBmgJaA9DCFa2D3lLBmHAlIaUUpRoFUvIaBZHQF2RMPjGT9t1fZQoaAZoCWgPQwhd3hyuFR93wJSGlFKUaBVLyGgWR0Bdmyro4dZJdX2UKGgGaAloD0MIER0CR8I/d8CUhpRSlGgVS8hoFkdAXaUTYdyT6nV9lChoBmgJaA9DCFYPmIdMVV/AlIaUUpRoFUvIaBZHQF2uKcd5prV1fZQoaAZoCWgPQwgUdeYeErpvwJSGlFKUaBVLyGgWR0BdtuxW1c+rdX2UKGgGaAloD0MI6ZleYixT/r+UhpRSlGgVS8hoFkdAXb+UJOWSlnV9lChoBmgJaA9DCB2OrtIdZnDAlIaUUpRoFUvIaBZHQF3IEJBw++x1fZQoaAZoCWgPQwgA4q5exWlgwJSGlFKUaBVLyGgWR0Bd0IJZ4fOldX2UKGgGaAloD0MIxebj2hABccCUhpRSlGgVS8hoFkdAXdifEn9ehXV9lChoBmgJaA9DCApLPKBsC3DAlIaUUpRoFUvIaBZHQF4t3os7MgV1fZQoaAZoCWgPQwg6AyMvaxVgwJSGlFKUaBVLyGgWR0BeOKv/zasZdX2UKGgGaAloD0MIlzYcloZ8YMCUhpRSlGgVS8hoFkdAXkO6STyJ9HV9lChoBmgJaA9DCOT09XzNZmDAlIaUUpRoFUvIaBZHQF5ODhcZ9/l1fZQoaAZoCWgPQwjoFU890nRgwJSGlFKUaBVLyGgWR0BeWEUTL4etdX2UKGgGaAloD0MIhxdEpCbwb8CUhpRSlGgVS8hoFkdAXmLbvgFX73V9lChoBmgJaA9DCIRjlj0JiH/AlIaUUpRoFUvIaBZHQF5tSR8twrF1fZQoaAZoCWgPQwgf14aKMUZwwJSGlFKUaBVLyGgWR0Bed2/nGKhtdX2UKGgGaAloD0MIN8R4zatQb8CUhpRSlGgVS8hoFkdAXoGk2xY7rHV9lChoBmgJaA9DCP5HpkPnbHfAlIaUUpRoFUvIaBZHQF6LkCV8kUt1fZQoaAZoCWgPQwjPLXQlgkxuwJSGlFKUaBVLyGgWR0Be+2Lk0aZQdX2UKGgGaAloD0MISrVPx2OVXsCUhpRSlGgVS8hoFkdAXwnJ5mh/RXV9lChoBmgJaA9DCNe/6zNnAW/AlIaUUpRoFUvIaBZHQF8XCo0hvBJ1fZQoaAZoCWgPQwjQs1n1+bB/wJSGlFKUaBVLyGgWR0BfI9R77bcodX2UKGgGaAloD0MIOGkaFM16bcCUhpRSlGgVS8hoFkdAXy+GM4tHx3V9lChoBmgJaA9DCG3i5H4HK3fAlIaUUpRoFUvIaBZHQF86UXYUWVN1fZQoaAZoCWgPQwgAHHv2XCYAwJSGlFKUaBVLyGgWR0BfRP6wdKdydX2UKGgGaAloD0MI/TGtTSMTeMCUhpRSlGgVS8hoFkdAX09FhG6PKnV9lChoBmgJaA9DCFRXPsvzUF/AlIaUUpRoFUvIaBZHQF9dbPQfIS11fZQoaAZoCWgPQwhxrIvbaBJgwJSGlFKUaBVLyGgWR0BfaqlchTwVdX2UKGgGaAloD0MIZ53xfXG1dcCUhpRSlGgVS8hoFkdAX90WUKRdQnV9lChoBmgJaA9DCEykNJvHdWDAlIaUUpRoFUvIaBZHQF/pt9x6v7p1fZQoaAZoCWgPQwicFOY9TmxgwJSGlFKUaBVLyGgWR0Bf9G6K+BYndX2UKGgGaAloD0MIIF1sWqlkYMCUhpRSlGgVS8hoFkdAX/4FPi1iOXV9lChoBmgJaA9DCHgJTn0geQXAlIaUUpRoFUvIaBZHQGADmv4dp7F1fZQoaAZoCWgPQwjwGYnQCLb7v5SGlFKUaBVLyGgWR0BgB+vZAY51dX2UKGgGaAloD0MIDf/pBoqSb8CUhpRSlGgVS8hoFkdAYAw3PRiPQ3V9lChoBmgJaA9DCK37x0L0AW/AlIaUUpRoFUvIaBZHQGAQftIClrN1fZQoaAZoCWgPQwi/DTFe80xfwJSGlFKUaBVLyGgWR0BgFMgZCOWCdX2UKGgGaAloD0MIiNhg4STucMCUhpRSlGgVS8hoFkdAYBjWd3B55nV9lChoBmgJaA9DCLHAV3RrwG/AlIaUUpRoFUvIaBZHQGAc4lIEr5J1fZQoaAZoCWgPQwhk5ZfB2DVwwJSGlFKUaBVLyGgWR0BgR7LGJemfdX2UKGgGaAloD0MIiSZQxKJLccCUhpRSlGgVS8hoFkdAYE6F3Y+SsHV9lChoBmgJaA9DCOhNRSoMTGDAlIaUUpRoFUvIaBZHQGBViHRCx/x1fZQoaAZoCWgPQwiNmUS94FP2v5SGlFKUaBVLyGgWR0BgXJrtVrAQdX2UKGgGaAloD0MIFceBV8sd7L+UhpRSlGgVS8hoFkdAYGHGy5Zr6HV9lChoBmgJaA9DCIRkARM4+G3AlIaUUpRoFUvIaBZHQGBmmvfTCtR1fZQoaAZoCWgPQwiRQ8TNqVVfwJSGlFKUaBVLyGgWR0BgazmEGqxUdX2UKGgGaAloD0MISBtHrEVDYMCUhpRSlGgVS8hoFkdAYG+mygPEsXV9lChoBmgJaA9DCP0Ux4HXcW7AlIaUUpRoFUvIaBZHQGB0HEMspXp1fZQoaAZoCWgPQwiESfHxCRBewJSGlFKUaBVLyGgWR0BgeLBuXNTtdX2UKGgGaAloD0MIwktw6oMBYMCUhpRSlGgVS8hoFkdAYKXWBBiTdXV9lChoBmgJaA9DCAqgGFmyVW3AlIaUUpRoFUvIaBZHQGCsSGSIP9V1fZQoaAZoCWgPQwjNAu0OKbhfwJSGlFKUaBVLyGgWR0BgsYC0WuYAdX2UKGgGaAloD0MIXfksz4OoXcCUhpRSlGgVS8hoFkdAYLZN8ma6SXV9lChoBmgJaA9DCNYBEHd1VmDAlIaUUpRoFUvIaBZHQGC7mwJPZZl1fZQoaAZoCWgPQwhosKnzqFVgwJSGlFKUaBVLyGgWR0BgwOglF+d9dX2UKGgGaAloD0MIlPYGXxgLcMCUhpRSlGgVS8hoFkdAYMVtdAxBV3V9lChoBmgJaA9DCLnCu1zEdwPAlIaUUpRoFUvIaBZHQGDKNmDlHSZ1fZQoaAZoCWgPQwjEIoYdxu1swJSGlFKUaBVLyGgWR0BgzpOSGJvYdX2UKGgGaAloD0MIu/JZnodaccCUhpRSlGgVS8hoFkdAYNLQVsUIs3V9lChoBmgJaA9DCFVoIJZN2WDAlIaUUpRoFUvIaBZHQGD7DW9US7J1fZQoaAZoCWgPQwij6IGPwUr+v5SGlFKUaBVLyGgWR0BhAOUSqU/wdX2UKGgGaAloD0MIndmu0Ae+X8CUhpRSlGgVS8hoFkdAYQelOXVslHV9lChoBmgJaA9DCAH8U6rEImDAlIaUUpRoFUvIaBZHQGEORXGOuJV1fZQoaAZoCWgPQwhxqUpbXOPmv5SGlFKUaBVLyGgWR0BhFPuiN83NdX2UKGgGaAloD0MIXdxGA3iLCMCUhpRSlGgVS8hoFkdAYRq/etSydHV9lChoBmgJaA9DCCb+KOrM01/AlIaUUpRoFUvIaBZHQGEgB9LHuJF1fZQoaAZoCWgPQwiBeciUj3BtwJSGlFKUaBVLyGgWR0BhJNznzQNTdX2UKGgGaAloD0MI2GX4TzflX8CUhpRSlGgVS8hoFkdAYSl+yZ8a43V9lChoBmgJaA9DCBUeNLvu2njAlIaUUpRoFUvIaBZHQGEt3Z5AyEd1ZS4="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
- "_n_updates": 490,
84
- "n_steps": 2048,
85
- "gamma": 0.98,
86
  "gae_lambda": 0.95,
87
  "ent_coef": 0.0,
88
  "vf_coef": 0.5,
@@ -91,7 +91,7 @@
91
  "n_epochs": 10,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
- ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
  },
96
  "clip_range_vf": null,
97
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f25658c3a70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f25658c3b00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f25658c3b90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f25658c3c20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f25658c3cb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f25658c3d40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f25658c3dd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f25658c3e60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f25658c3ef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f25658c3f80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f25658c9050>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2565917660>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAgL8AAIC/AAAAwZRoCksDhZSMAUOUdJRSlIwEaGlnaJRoECiWDAAAAAAAAAAAAIA/AACAPwAAAEGUaApLA4WUaBN0lFKUjA1ib3VuZGVkX2JlbG93lGgQKJYDAAAAAAAAAAEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgfSwOFlGgTdJRSlIwKX25wX3JhbmRvbZROjAZfc2hhcGWUSwOFlHViLg==",
26
  "dtype": "float32",
 
 
 
27
  "low": "[-1. -1. -8.]",
28
  "high": "[1. 1. 8.]",
29
  "bounded_below": "[ True True True]",
30
  "bounded_above": "[ True True True]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 3
34
+ ]
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAMCUaApLAYWUjAFDlHSUUpSMBGhpZ2iUaBAolgQAAAAAAAAAAAAAQJRoCksBhZRoE3SUUpSMDWJvdW5kZWRfYmVsb3eUaBAolgEAAAAAAAAAAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgEAAAAAAAAAAZRoH0sBhZRoE3SUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgujAVzdGF0ZZR9lCiMA2tleZRoECiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoE3SUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
39
  "dtype": "float32",
 
 
 
40
  "low": "[-2.]",
41
  "high": "[2.]",
42
  "bounded_below": "[ True]",
43
  "bounded_above": "[ True]",
44
+ "_np_random": "RandomState(MT19937)",
45
+ "_shape": [
46
+ 1
47
+ ]
48
  },
49
+ "n_envs": 4,
50
+ "num_timesteps": 102400,
51
  "_total_timesteps": 100000,
52
  "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
  "action_noise": null,
55
+ "start_time": 1632734690.5461335,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
59
+ },
60
  "tensorboard_log": null,
61
  "lr_schedule": {
62
  ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
 
 
 
64
  },
65
+ "_last_obs": null,
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": true,
73
  "sde_sample_freq": 4,
74
+ "_current_progress_remaining": -0.02400000000000002,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6uv5muVyC8CUhpRSlIwBbJRLyIwBdJRHQE4Gh0Qsf7t1fZQoaAZoCWgPQwg2PpP9c3xpwJSGlFKUaBVLyGgWR0BOBnBtUGVzdX2UKGgGaAloD0MI02cHXNeuecCUhpRSlGgVS8hoFkdATgZVuJk5InV9lChoBmgJaA9DCFQ57Sk523jAlIaUUpRoFUvIaBZHQE4GQLeANG51fZQoaAZoCWgPQwhnf6Dc9lNwwJSGlFKUaBVLyGgWR0BOLfzJ6po9dX2UKGgGaAloD0MIAS8zbFR9d8CUhpRSlGgVS8hoFkdATi3mYBvJinV9lChoBmgJaA9DCAYq498HrIvAlIaUUpRoFUvIaBZHQE4ty3CsOoZ1fZQoaAZoCWgPQwh1HhX/N6dwwJSGlFKUaBVLyGgWR0BOLbZezD4ydX2UKGgGaAloD0MIVVBR9atXYcCUhpRSlGgVS8hoFkdATlHQF9roGXV9lChoBmgJaA9DCA4yycjZfHjAlIaUUpRoFUvIaBZHQE5Ru7YkE9t1fZQoaAZoCWgPQwjvA5DaxGkQwJSGlFKUaBVLyGgWR0BOUaErXlKcdX2UKGgGaAloD0MImN2ThwWLYMCUhpRSlGgVS8hoFkdATlGMIeHSGHV9lChoBmgJaA9DCJEqilcZq3DAlIaUUpRoFUvIaBZHQE5xJCjUNKB1fZQoaAZoCWgPQwiA7suZbbdhwJSGlFKUaBVLyGgWR0BOcQzUI9kjdX2UKGgGaAloD0MIG/UQje7aYMCUhpRSlGgVS8hoFkdATnDxCpm29nV9lChoBmgJaA9DCFr1udqKPRLAlIaUUpRoFUvIaBZHQE5w23rleWx1fZQoaAZoCWgPQwjH2XQEcIZgwJSGlFKUaBVLyGgWR0BPj1f3N9pidX2UKGgGaAloD0MI/rrTnecNcsCUhpRSlGgVS8hoFkdAT49ANXo1UHV9lChoBmgJaA9DCGr5gas81XHAlIaUUpRoFUvIaBZHQE+TgP3BYV91fZQoaAZoCWgPQwhjXkccsklgwJSGlFKUaBVLyGgWR0BPk3HJcPe6dX2UKGgGaAloD0MI5IdKI+ZPdcCUhpRSlGgVS8hoFkdAT7CjFhoduHV9lChoBmgJaA9DCCSBBps6GWHAlIaUUpRoFUvIaBZHQE+wi1RceKd1fZQoaAZoCWgPQwiuY1xxsS1ywJSGlFKUaBVLyGgWR0BPsG8dxQzldX2UKGgGaAloD0MI+iZNg2LVcMCUhpRSlGgVS8hoFkdAT7BZEDyOJnV9lChoBmgJaA9DCEFJgQUwZQbAlIaUUpRoFUvIaBZHQE/MHSF49ox1fZQoaAZoCWgPQwifqkIDUcyAwJSGlFKUaBVLyGgWR0BPzATAWSEEdX2UKGgGaAloD0MIXYqryr5ycMCUhpRSlGgVS8hoFkdAT8voNd7fHnV9lChoBmgJaA9DCFN40Oy6VxXAlIaUUpRoFUvIaBZHQE/L0ZFXq7l1fZQoaAZoCWgPQwhOYaWCSrRwwJSGlFKUaBVLyGgWR0BP5ogmqo60dX2UKGgGaAloD0MI8/+qIwcjcMCUhpRSlGgVS8hoFkdAT+ZvitJWenV9lChoBmgJaA9DCPxW68Qls3DAlIaUUpRoFUvIaBZHQE/mUr08NhF1fZQoaAZoCWgPQwg8aeGyisJ3wJSGlFKUaBVLyGgWR0BP5jwQUYbbdX2UKGgGaAloD0MItI6qJohycsCUhpRSlGgVS8hoFkdAUACkoF3Y+XV9lChoBmgJaA9DCF1r71PVtGDAlIaUUpRoFUvIaBZHQFAAnqmj0th1fZQoaAZoCWgPQwjs+C8QhDVhwJSGlFKUaBVLyGgWR0BQAJNj9XLedX2UKGgGaAloD0MIxqUqbTF4eMCUhpRSlGgVS8hoFkdAUACKFZgXuXV9lChoBmgJaA9DCL1uERhrO2HAlIaUUpRoFUvIaBZHQFC4/4Irvst1fZQoaAZoCWgPQwiWk1D6wjNhwJSGlFKUaBVLyGgWR0BQuPN7jT8YdX2UKGgGaAloD0MIdQDEXb0DYMCUhpRSlGgVS8hoFkdAULjmig00nHV9lChoBmgJaA9DCInrGFdcgGHAlIaUUpRoFUvIaBZHQFC4238XN1R1fZQoaAZoCWgPQwiPNSODHGRwwJSGlFKUaBVLyGgWR0BQxknb7CSBdX2UKGgGaAloD0MI7s9FQ0avcMCUhpRSlGgVS8hoFkdAUMY9gWrOq3V9lChoBmgJaA9DCBMLfEX3XnnAlIaUUpRoFUvIaBZHQFDGLzwtrbh1fZQoaAZoCWgPQwjwiXWqPO9zwJSGlFKUaBVLyGgWR0BQxiQgcLjQdX2UKGgGaAloD0MI6DBfXoCocMCUhpRSlGgVS8hoFkdAUNNix3V093V9lChoBmgJaA9DCGx8JvsngHbAlIaUUpRoFUvIaBZHQFDTVjI7vG91fZQoaAZoCWgPQwgj2o6pez54wJSGlFKUaBVLyGgWR0BQ00fDDTBqdX2UKGgGaAloD0MIySJNvAN2bcCUhpRSlGgVS8hoFkdAUNM8U21lXnV9lChoBmgJaA9DCC3Pg7uz+mDAlIaUUpRoFUvIaBZHQFDgkFfReC11fZQoaAZoCWgPQwgu/rYnSKlgwJSGlFKUaBVLyGgWR0BQ4IRVZLZjdX2UKGgGaAloD0MIUHEceLUEYMCUhpRSlGgVS8hoFkdAUOB2B8QZoHV9lChoBmgJaA9DCNF4Iojzim7AlIaUUpRoFUvIaBZHQFDgaqjrRjV1fZQoaAZoCWgPQwjjxFc7in9hwJSGlFKUaBVLyGgWR0BQ7b8zhxYJdX2UKGgGaAloD0MISaEsfH1NAcCUhpRSlGgVS8hoFkdAUO2y2QXAM3V9lChoBmgJaA9DCCgrhqsDtWDAlIaUUpRoFUvIaBZHQFDtpHZsbed1fZQoaAZoCWgPQwis4Lchxm5xwJSGlFKUaBVLyGgWR0BQ7ZkGzKLbdX2UKGgGaAloD0MIogvqW2bYYMCUhpRSlGgVS8hoFkdAUXu4ZuQ6qHV9lChoBmgJaA9DCCv4bYgxRXfAlIaUUpRoFUvIaBZHQFF7rJr+Hah1fZQoaAZoCWgPQwjJzAUuj4NwwJSGlFKUaBVLyGgWR0BRe562OQyRdX2UKGgGaAloD0MIvM6G/PMrcMCUhpRSlGgVS8hoFkdAUXuTq0MPSXV9lChoBmgJaA9DCAfSxaaVYhTAlIaUUpRoFUvIaBZHQFGKwIMSbph1fZQoaAZoCWgPQwgld9hEZppgwJSGlFKUaBVLyGgWR0BRirSy+pOvdX2UKGgGaAloD0MIu/JZngfjYMCUhpRSlGgVS8hoFkdAUYqmrKeTV3V9lChoBmgJaA9DCL048dWO+l3AlIaUUpRoFUvIaBZHQFGKm7aqS5l1fZQoaAZoCWgPQwgJbM7Bc7h3wJSGlFKUaBVLyGgWR0BRmc1Gb1AadX2UKGgGaAloD0MIvLA1W/lqYMCUhpRSlGgVS8hoFkdAUZnBguyu6nV9lChoBmgJaA9DCCuhuyTO5nnAlIaUUpRoFUvIaBZHQFGZs67ulXR1fZQoaAZoCWgPQwg2qz5XW99wwJSGlFKUaBVLyGgWR0BRmaifxtpFdX2UKGgGaAloD0MI8ItLVVrbYMCUhpRSlGgVS8hoFkdAUajy8SPEKnV9lChoBmgJaA9DCFFpxMx+OHDAlIaUUpRoFUvIaBZHQFGo5vLowEh1fZQoaAZoCWgPQwibV3VWi9xvwJSGlFKUaBVLyGgWR0BRqNi2DxsmdX2UKGgGaAloD0MIqaCi6ldaFMCUhpRSlGgVS8hoFkdAUajNZ/0/W3V9lChoBmgJaA9DCOZZSSs+h2DAlIaUUpRoFUvIaBZHQFG3RdyDIzZ1fZQoaAZoCWgPQwhr8/+qo5BwwJSGlFKUaBVLyGgWR0BRtznNgSezdX2UKGgGaAloD0MINpVFYZfbYMCUhpRSlGgVS8hoFkdAUbcrlNlAeXV9lChoBmgJaA9DCNFdEmdFd27AlIaUUpRoFUvIaBZHQFG3IFNcnmd1fZQoaAZoCWgPQwhcrKjBNCpwwJSGlFKUaBVLyGgWR0BSReUdJaq0dX2UKGgGaAloD0MIAwmKH+OebsCUhpRSlGgVS8hoFkdAUkXZBcAzYXV9lChoBmgJaA9DCCkEcoljqnrAlIaUUpRoFUvIaBZHQFJFyvLX+VF1fZQoaAZoCWgPQwjKpfELbzJ2wJSGlFKUaBVLyGgWR0BSRcAR02cbdX2UKGgGaAloD0MIvvc3aK8GIMCUhpRSlGgVS8hoFkdAUlQrsjVx0nV9lChoBmgJaA9DCPdZZaa0vgjAlIaUUpRoFUvIaBZHQFJUH6dlNDd1fZQoaAZoCWgPQwgddAmH3mdwwJSGlFKUaBVLyGgWR0BSVBGQSzw+dX2UKGgGaAloD0MIjXvzGyYceMCUhpRSlGgVS8hoFkdAUlQGX5WRzXV9lChoBmgJaA9DCL0cdt8xkWDAlIaUUpRoFUvIaBZHQFJh+bVjI7x1fZQoaAZoCWgPQwigT+RJ0kVgwJSGlFKUaBVLyGgWR0BSYe6NEPUbdX2UKGgGaAloD0MI/FHUmTtecMCUhpRSlGgVS8hoFkdAUmHgccU/OnV9lChoBmgJaA9DCGByo8gamHDAlIaUUpRoFUvIaBZHQFJh1UlzEJl1fZQoaAZoCWgPQwgQAvIl1K5wwJSGlFKUaBVLyGgWR0BSlRRVIZqEdX2UKGgGaAloD0MIMjuL3ql5YcCUhpRSlGgVS8hoFkdAUpUI+nqFAXV9lChoBmgJaA9DCBLCo40j22DAlIaUUpRoFUvIaBZHQFKU+tKZlWh1fZQoaAZoCWgPQwiOeR1xCOZwwJSGlFKUaBVLyGgWR0BSlO+M6zVudX2UKGgGaAloD0MISFLSw1BMYcCUhpRSlGgVS8hoFkdAUqJ7IDHOr3V9lChoBmgJaA9DCByxFp/CBHHAlIaUUpRoFUvIaBZHQFKibtqpLmJ1fZQoaAZoCWgPQwixTSoaq3d4wJSGlFKUaBVLyGgWR0BSomB8QZn+dX2UKGgGaAloD0MII2b2eQznd8CUhpRSlGgVS8hoFkdAUqJVGTcIq3V9lChoBmgJaA9DCBnIs8s3iWDAlIaUUpRoFUvIaBZHQFKvmsvIwM91fZQoaAZoCWgPQwhpN/qYj4lgwJSGlFKUaBVLyGgWR0BSr45o4+8odX2UKGgGaAloD0MIJJhqZm09csCUhpRSlGgVS8hoFkdAUq9/8VHnU3V9lChoBmgJaA9DCKetEcE4OAnAlIaUUpRoFUvIaBZHQFKvdHlOoHd1ZS4="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
+ "_n_updates": 250,
84
+ "n_steps": 1024,
85
+ "gamma": 0.9,
86
  "gae_lambda": 0.95,
87
  "ent_coef": 0.0,
88
  "vf_coef": 0.5,
 
91
  "n_epochs": 10,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
  },
96
  "clip_range_vf": null,
97
  "normalize_advantage": true,
ppo-Pendulum-v1/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab7bb241ea8bdf9ba2cb0b273908ebea05f4558db996f851afbc36423cd0e12b
3
  size 78871
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a7025b982c08ed412ef200a303c5f9ec430bd0191e8fbff50ce7270508e279
3
  size 78871
ppo-Pendulum-v1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:28f38865aa31f8900ad8e354f1fbce0442fd64c47fdc0ae631c082fc5359872f
3
  size 40254
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1af2047696c1fabfabd154e08c09f753d48dfb5e6209186cf81994d1c86239d
3
  size 40254
ppo-Pendulum-v1/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.4.0-109-generic-x86_64-with-debian-bullseye-sid #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022
2
- Python: 3.7.9
3
- Stable-Baselines3: 1.5.1a5
4
  PyTorch: 1.11.0+cpu
5
  GPU Enabled: False
6
- Numpy: 1.20.2
7
  Gym: 0.21.0
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
  PyTorch: 1.11.0+cpu
5
  GPU Enabled: False
6
+ Numpy: 1.21.6
7
  Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:76a757969f0b4f5af3cec9fae2326ba90dc3f60a8d064e3b808e4fc1e855eb1c
3
- size 203450
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1287e5a758782bf6750be702e811de23b3181737a983f31b2af6b062ecc5832e
3
+ size 163345
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -272.21298450000006, "std_reward": 159.73207117998575, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T11:35:55.019292"}
 
1
+ {"mean_reward": -230.42289380000003, "std_reward": 142.53933962970044, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-24T22:05:42.793806"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64d86e8a9902ea1331859979b2116525b315535c88e8101d21b1b235f8143864
3
+ size 18474