Initial Commit
Browse files- README.md +40 -24
- args.yml +65 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- ppo-Pendulum-v1.zip +2 -2
- ppo-Pendulum-v1/_stable_baselines3_version +1 -1
- ppo-Pendulum-v1/data +39 -39
- ppo-Pendulum-v1/policy.optimizer.pth +1 -1
- ppo-Pendulum-v1/policy.pth +1 -1
- ppo-Pendulum-v1/system_info.txt +4 -4
- replay.mp4 +2 -2
- results.json +1 -1
- train_eval_metrics.zip +3 -0
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value: -
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
@@ -20,31 +20,47 @@ model-index:
|
|
20 |
type: Pendulum-v1
|
21 |
---
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
env_id = "Pendulum-v1"
|
33 |
-
env = make_vec_env(env_id, n_envs=1)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
```
|
50 |
-
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -230.42 +/- 142.54
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
20 |
type: Pendulum-v1
|
21 |
---
|
22 |
|
23 |
+
# **PPO** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **PPO** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
|
32 |
+
## Usage (with SB3 RL Zoo)
|
|
|
|
|
33 |
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env Pendulum-v1 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env Pendulum-v1 -f logs/
|
42 |
+
```
|
|
|
43 |
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env Pendulum-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('clip_range', 0.2),
|
54 |
+
('ent_coef', 0.0),
|
55 |
+
('gae_lambda', 0.95),
|
56 |
+
('gamma', 0.9),
|
57 |
+
('learning_rate', 0.001),
|
58 |
+
('n_envs', 4),
|
59 |
+
('n_epochs', 10),
|
60 |
+
('n_steps', 1024),
|
61 |
+
('n_timesteps', 100000.0),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('sde_sample_freq', 4),
|
64 |
+
('use_sde', True),
|
65 |
+
('normalize', False)])
|
66 |
```
|
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- Pendulum-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_eval_envs
|
21 |
+
- 10
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 620965731
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - clip_range
|
3 |
+
- 0.2
|
4 |
+
- - ent_coef
|
5 |
+
- 0.0
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.95
|
8 |
+
- - gamma
|
9 |
+
- 0.9
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - n_envs
|
13 |
+
- 4
|
14 |
+
- - n_epochs
|
15 |
+
- 10
|
16 |
+
- - n_steps
|
17 |
+
- 1024
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - sde_sample_freq
|
23 |
+
- 4
|
24 |
+
- - use_sde
|
25 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Pendulum-v1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c09e61dbf45ef98ad5f8a615b430144f5b1e7233f97ec304aba079920996eb17
|
3 |
+
size 139074
|
ppo-Pendulum-v1/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.5.
|
|
|
1 |
+
1.5.1a6
|
ppo-Pendulum-v1/data
CHANGED
@@ -4,85 +4,85 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
26 |
"dtype": "float32",
|
27 |
-
"_shape": [
|
28 |
-
3
|
29 |
-
],
|
30 |
"low": "[-1. -1. -8.]",
|
31 |
"high": "[1. 1. 8.]",
|
32 |
"bounded_below": "[ True True True]",
|
33 |
"bounded_above": "[ True True True]",
|
34 |
-
"_np_random": null
|
|
|
|
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
-
":serialized:": "
|
39 |
"dtype": "float32",
|
40 |
-
"_shape": [
|
41 |
-
1
|
42 |
-
],
|
43 |
"low": "[-2.]",
|
44 |
"high": "[2.]",
|
45 |
"bounded_below": "[ True]",
|
46 |
"bounded_above": "[ True]",
|
47 |
-
"_np_random":
|
|
|
|
|
|
|
48 |
},
|
49 |
-
"n_envs":
|
50 |
-
"num_timesteps":
|
51 |
"_total_timesteps": 100000,
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
-
"seed":
|
54 |
"action_noise": null,
|
55 |
-
"start_time":
|
56 |
-
"learning_rate":
|
|
|
|
|
|
|
57 |
"tensorboard_log": null,
|
58 |
"lr_schedule": {
|
59 |
":type:": "<class 'function'>",
|
60 |
-
":serialized:": "
|
61 |
-
},
|
62 |
-
"_last_obs": {
|
63 |
-
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHnwfz9RULK8EVDfvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
65 |
},
|
|
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
68 |
-
":serialized:": "
|
69 |
},
|
70 |
"_last_original_obs": null,
|
71 |
"_episode_num": 0,
|
72 |
"use_sde": true,
|
73 |
"sde_sample_freq": 4,
|
74 |
-
"_current_progress_remaining": -0.
|
75 |
"ep_info_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
78 |
},
|
79 |
"ep_success_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
},
|
83 |
-
"_n_updates":
|
84 |
-
"n_steps":
|
85 |
-
"gamma": 0.
|
86 |
"gae_lambda": 0.95,
|
87 |
"ent_coef": 0.0,
|
88 |
"vf_coef": 0.5,
|
@@ -91,7 +91,7 @@
|
|
91 |
"n_epochs": 10,
|
92 |
"clip_range": {
|
93 |
":type:": "<class 'function'>",
|
94 |
-
":serialized:": "
|
95 |
},
|
96 |
"clip_range_vf": null,
|
97 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f25658c3a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f25658c3b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f25658c3b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f25658c3c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f25658c3cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f25658c3d40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f25658c3dd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f25658c3e60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f25658c3ef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f25658c3f80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f25658c9050>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2565917660>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAgL8AAIC/AAAAwZRoCksDhZSMAUOUdJRSlIwEaGlnaJRoECiWDAAAAAAAAAAAAIA/AACAPwAAAEGUaApLA4WUaBN0lFKUjA1ib3VuZGVkX2JlbG93lGgQKJYDAAAAAAAAAAEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgfSwOFlGgTdJRSlIwKX25wX3JhbmRvbZROjAZfc2hhcGWUSwOFlHViLg==",
|
26 |
"dtype": "float32",
|
|
|
|
|
|
|
27 |
"low": "[-1. -1. -8.]",
|
28 |
"high": "[1. 1. 8.]",
|
29 |
"bounded_below": "[ True True True]",
|
30 |
"bounded_above": "[ True True True]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
3
|
34 |
+
]
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAMCUaApLAYWUjAFDlHSUUpSMBGhpZ2iUaBAolgQAAAAAAAAAAAAAQJRoCksBhZRoE3SUUpSMDWJvdW5kZWRfYmVsb3eUaBAolgEAAAAAAAAAAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgEAAAAAAAAAAZRoH0sBhZRoE3SUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgujAVzdGF0ZZR9lCiMA2tleZRoECiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoE3SUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
|
39 |
"dtype": "float32",
|
|
|
|
|
|
|
40 |
"low": "[-2.]",
|
41 |
"high": "[2.]",
|
42 |
"bounded_below": "[ True]",
|
43 |
"bounded_above": "[ True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
1
|
47 |
+
]
|
48 |
},
|
49 |
+
"n_envs": 4,
|
50 |
+
"num_timesteps": 102400,
|
51 |
"_total_timesteps": 100000,
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
"action_noise": null,
|
55 |
+
"start_time": 1632734690.5461335,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
"tensorboard_log": null,
|
61 |
"lr_schedule": {
|
62 |
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
|
|
|
|
|
|
64 |
},
|
65 |
+
"_last_obs": null,
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
69 |
},
|
70 |
"_last_original_obs": null,
|
71 |
"_episode_num": 0,
|
72 |
"use_sde": true,
|
73 |
"sde_sample_freq": 4,
|
74 |
+
"_current_progress_remaining": -0.02400000000000002,
|
75 |
"ep_info_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6uv5muVyC8CUhpRSlIwBbJRLyIwBdJRHQE4Gh0Qsf7t1fZQoaAZoCWgPQwg2PpP9c3xpwJSGlFKUaBVLyGgWR0BOBnBtUGVzdX2UKGgGaAloD0MI02cHXNeuecCUhpRSlGgVS8hoFkdATgZVuJk5InV9lChoBmgJaA9DCFQ57Sk523jAlIaUUpRoFUvIaBZHQE4GQLeANG51fZQoaAZoCWgPQwhnf6Dc9lNwwJSGlFKUaBVLyGgWR0BOLfzJ6po9dX2UKGgGaAloD0MIAS8zbFR9d8CUhpRSlGgVS8hoFkdATi3mYBvJinV9lChoBmgJaA9DCAYq498HrIvAlIaUUpRoFUvIaBZHQE4ty3CsOoZ1fZQoaAZoCWgPQwh1HhX/N6dwwJSGlFKUaBVLyGgWR0BOLbZezD4ydX2UKGgGaAloD0MIVVBR9atXYcCUhpRSlGgVS8hoFkdATlHQF9roGXV9lChoBmgJaA9DCA4yycjZfHjAlIaUUpRoFUvIaBZHQE5Ru7YkE9t1fZQoaAZoCWgPQwjvA5DaxGkQwJSGlFKUaBVLyGgWR0BOUaErXlKcdX2UKGgGaAloD0MImN2ThwWLYMCUhpRSlGgVS8hoFkdATlGMIeHSGHV9lChoBmgJaA9DCJEqilcZq3DAlIaUUpRoFUvIaBZHQE5xJCjUNKB1fZQoaAZoCWgPQwiA7suZbbdhwJSGlFKUaBVLyGgWR0BOcQzUI9kjdX2UKGgGaAloD0MIG/UQje7aYMCUhpRSlGgVS8hoFkdATnDxCpm29nV9lChoBmgJaA9DCFr1udqKPRLAlIaUUpRoFUvIaBZHQE5w23rleWx1fZQoaAZoCWgPQwjH2XQEcIZgwJSGlFKUaBVLyGgWR0BPj1f3N9pidX2UKGgGaAloD0MI/rrTnecNcsCUhpRSlGgVS8hoFkdAT49ANXo1UHV9lChoBmgJaA9DCGr5gas81XHAlIaUUpRoFUvIaBZHQE+TgP3BYV91fZQoaAZoCWgPQwhjXkccsklgwJSGlFKUaBVLyGgWR0BPk3HJcPe6dX2UKGgGaAloD0MI5IdKI+ZPdcCUhpRSlGgVS8hoFkdAT7CjFhoduHV9lChoBmgJaA9DCCSBBps6GWHAlIaUUpRoFUvIaBZHQE+wi1RceKd1fZQoaAZoCWgPQwiuY1xxsS1ywJSGlFKUaBVLyGgWR0BPsG8dxQzldX2UKGgGaAloD0MI+iZNg2LVcMCUhpRSlGgVS8hoFkdAT7BZEDyOJnV9lChoBmgJaA9DCEFJgQUwZQbAlIaUUpRoFUvIaBZHQE/MHSF49ox1fZQoaAZoCWgPQwifqkIDUcyAwJSGlFKUaBVLyGgWR0BPzATAWSEEdX2UKGgGaAloD0MIXYqryr5ycMCUhpRSlGgVS8hoFkdAT8voNd7fHnV9lChoBmgJaA9DCFN40Oy6VxXAlIaUUpRoFUvIaBZHQE/L0ZFXq7l1fZQoaAZoCWgPQwhOYaWCSrRwwJSGlFKUaBVLyGgWR0BP5ogmqo60dX2UKGgGaAloD0MI8/+qIwcjcMCUhpRSlGgVS8hoFkdAT+ZvitJWenV9lChoBmgJaA9DCPxW68Qls3DAlIaUUpRoFUvIaBZHQE/mUr08NhF1fZQoaAZoCWgPQwg8aeGyisJ3wJSGlFKUaBVLyGgWR0BP5jwQUYbbdX2UKGgGaAloD0MItI6qJohycsCUhpRSlGgVS8hoFkdAUACkoF3Y+XV9lChoBmgJaA9DCF1r71PVtGDAlIaUUpRoFUvIaBZHQFAAnqmj0th1fZQoaAZoCWgPQwjs+C8QhDVhwJSGlFKUaBVLyGgWR0BQAJNj9XLedX2UKGgGaAloD0MIxqUqbTF4eMCUhpRSlGgVS8hoFkdAUACKFZgXuXV9lChoBmgJaA9DCL1uERhrO2HAlIaUUpRoFUvIaBZHQFC4/4Irvst1fZQoaAZoCWgPQwiWk1D6wjNhwJSGlFKUaBVLyGgWR0BQuPN7jT8YdX2UKGgGaAloD0MIdQDEXb0DYMCUhpRSlGgVS8hoFkdAULjmig00nHV9lChoBmgJaA9DCInrGFdcgGHAlIaUUpRoFUvIaBZHQFC4238XN1R1fZQoaAZoCWgPQwiPNSODHGRwwJSGlFKUaBVLyGgWR0BQxknb7CSBdX2UKGgGaAloD0MI7s9FQ0avcMCUhpRSlGgVS8hoFkdAUMY9gWrOq3V9lChoBmgJaA9DCBMLfEX3XnnAlIaUUpRoFUvIaBZHQFDGLzwtrbh1fZQoaAZoCWgPQwjwiXWqPO9zwJSGlFKUaBVLyGgWR0BQxiQgcLjQdX2UKGgGaAloD0MI6DBfXoCocMCUhpRSlGgVS8hoFkdAUNNix3V093V9lChoBmgJaA9DCGx8JvsngHbAlIaUUpRoFUvIaBZHQFDTVjI7vG91fZQoaAZoCWgPQwgj2o6pez54wJSGlFKUaBVLyGgWR0BQ00fDDTBqdX2UKGgGaAloD0MIySJNvAN2bcCUhpRSlGgVS8hoFkdAUNM8U21lXnV9lChoBmgJaA9DCC3Pg7uz+mDAlIaUUpRoFUvIaBZHQFDgkFfReC11fZQoaAZoCWgPQwgu/rYnSKlgwJSGlFKUaBVLyGgWR0BQ4IRVZLZjdX2UKGgGaAloD0MIUHEceLUEYMCUhpRSlGgVS8hoFkdAUOB2B8QZoHV9lChoBmgJaA9DCNF4Iojzim7AlIaUUpRoFUvIaBZHQFDgaqjrRjV1fZQoaAZoCWgPQwjjxFc7in9hwJSGlFKUaBVLyGgWR0BQ7b8zhxYJdX2UKGgGaAloD0MISaEsfH1NAcCUhpRSlGgVS8hoFkdAUO2y2QXAM3V9lChoBmgJaA9DCCgrhqsDtWDAlIaUUpRoFUvIaBZHQFDtpHZsbed1fZQoaAZoCWgPQwis4Lchxm5xwJSGlFKUaBVLyGgWR0BQ7ZkGzKLbdX2UKGgGaAloD0MIogvqW2bYYMCUhpRSlGgVS8hoFkdAUXu4ZuQ6qHV9lChoBmgJaA9DCCv4bYgxRXfAlIaUUpRoFUvIaBZHQFF7rJr+Hah1fZQoaAZoCWgPQwjJzAUuj4NwwJSGlFKUaBVLyGgWR0BRe562OQyRdX2UKGgGaAloD0MIvM6G/PMrcMCUhpRSlGgVS8hoFkdAUXuTq0MPSXV9lChoBmgJaA9DCAfSxaaVYhTAlIaUUpRoFUvIaBZHQFGKwIMSbph1fZQoaAZoCWgPQwgld9hEZppgwJSGlFKUaBVLyGgWR0BRirSy+pOvdX2UKGgGaAloD0MIu/JZngfjYMCUhpRSlGgVS8hoFkdAUYqmrKeTV3V9lChoBmgJaA9DCL048dWO+l3AlIaUUpRoFUvIaBZHQFGKm7aqS5l1fZQoaAZoCWgPQwgJbM7Bc7h3wJSGlFKUaBVLyGgWR0BRmc1Gb1AadX2UKGgGaAloD0MIvLA1W/lqYMCUhpRSlGgVS8hoFkdAUZnBguyu6nV9lChoBmgJaA9DCCuhuyTO5nnAlIaUUpRoFUvIaBZHQFGZs67ulXR1fZQoaAZoCWgPQwg2qz5XW99wwJSGlFKUaBVLyGgWR0BRmaifxtpFdX2UKGgGaAloD0MI8ItLVVrbYMCUhpRSlGgVS8hoFkdAUajy8SPEKnV9lChoBmgJaA9DCFFpxMx+OHDAlIaUUpRoFUvIaBZHQFGo5vLowEh1fZQoaAZoCWgPQwibV3VWi9xvwJSGlFKUaBVLyGgWR0BRqNi2DxsmdX2UKGgGaAloD0MIqaCi6ldaFMCUhpRSlGgVS8hoFkdAUajNZ/0/W3V9lChoBmgJaA9DCOZZSSs+h2DAlIaUUpRoFUvIaBZHQFG3RdyDIzZ1fZQoaAZoCWgPQwhr8/+qo5BwwJSGlFKUaBVLyGgWR0BRtznNgSezdX2UKGgGaAloD0MINpVFYZfbYMCUhpRSlGgVS8hoFkdAUbcrlNlAeXV9lChoBmgJaA9DCNFdEmdFd27AlIaUUpRoFUvIaBZHQFG3IFNcnmd1fZQoaAZoCWgPQwhcrKjBNCpwwJSGlFKUaBVLyGgWR0BSReUdJaq0dX2UKGgGaAloD0MIAwmKH+OebsCUhpRSlGgVS8hoFkdAUkXZBcAzYXV9lChoBmgJaA9DCCkEcoljqnrAlIaUUpRoFUvIaBZHQFJFyvLX+VF1fZQoaAZoCWgPQwjKpfELbzJ2wJSGlFKUaBVLyGgWR0BSRcAR02cbdX2UKGgGaAloD0MIvvc3aK8GIMCUhpRSlGgVS8hoFkdAUlQrsjVx0nV9lChoBmgJaA9DCPdZZaa0vgjAlIaUUpRoFUvIaBZHQFJUH6dlNDd1fZQoaAZoCWgPQwgddAmH3mdwwJSGlFKUaBVLyGgWR0BSVBGQSzw+dX2UKGgGaAloD0MIjXvzGyYceMCUhpRSlGgVS8hoFkdAUlQGX5WRzXV9lChoBmgJaA9DCL0cdt8xkWDAlIaUUpRoFUvIaBZHQFJh+bVjI7x1fZQoaAZoCWgPQwigT+RJ0kVgwJSGlFKUaBVLyGgWR0BSYe6NEPUbdX2UKGgGaAloD0MI/FHUmTtecMCUhpRSlGgVS8hoFkdAUmHgccU/OnV9lChoBmgJaA9DCGByo8gamHDAlIaUUpRoFUvIaBZHQFJh1UlzEJl1fZQoaAZoCWgPQwgQAvIl1K5wwJSGlFKUaBVLyGgWR0BSlRRVIZqEdX2UKGgGaAloD0MIMjuL3ql5YcCUhpRSlGgVS8hoFkdAUpUI+nqFAXV9lChoBmgJaA9DCBLCo40j22DAlIaUUpRoFUvIaBZHQFKU+tKZlWh1fZQoaAZoCWgPQwiOeR1xCOZwwJSGlFKUaBVLyGgWR0BSlO+M6zVudX2UKGgGaAloD0MISFLSw1BMYcCUhpRSlGgVS8hoFkdAUqJ7IDHOr3V9lChoBmgJaA9DCByxFp/CBHHAlIaUUpRoFUvIaBZHQFKibtqpLmJ1fZQoaAZoCWgPQwixTSoaq3d4wJSGlFKUaBVLyGgWR0BSomB8QZn+dX2UKGgGaAloD0MII2b2eQznd8CUhpRSlGgVS8hoFkdAUqJVGTcIq3V9lChoBmgJaA9DCBnIs8s3iWDAlIaUUpRoFUvIaBZHQFKvmsvIwM91fZQoaAZoCWgPQwhpN/qYj4lgwJSGlFKUaBVLyGgWR0BSr45o4+8odX2UKGgGaAloD0MIJJhqZm09csCUhpRSlGgVS8hoFkdAUq9/8VHnU3V9lChoBmgJaA9DCKetEcE4OAnAlIaUUpRoFUvIaBZHQFKvdHlOoHd1ZS4="
|
78 |
},
|
79 |
"ep_success_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
},
|
83 |
+
"_n_updates": 250,
|
84 |
+
"n_steps": 1024,
|
85 |
+
"gamma": 0.9,
|
86 |
"gae_lambda": 0.95,
|
87 |
"ent_coef": 0.0,
|
88 |
"vf_coef": 0.5,
|
|
|
91 |
"n_epochs": 10,
|
92 |
"clip_range": {
|
93 |
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLfUMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
},
|
96 |
"clip_range_vf": null,
|
97 |
"normalize_advantage": true,
|
ppo-Pendulum-v1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 78871
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71a7025b982c08ed412ef200a303c5f9ec430bd0191e8fbff50ce7270508e279
|
3 |
size 78871
|
ppo-Pendulum-v1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 40254
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1af2047696c1fabfabd154e08c09f753d48dfb5e6209186cf81994d1c86239d
|
3 |
size 40254
|
ppo-Pendulum-v1/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.4.0-
|
2 |
-
Python: 3.7.
|
3 |
-
Stable-Baselines3: 1.5.
|
4 |
PyTorch: 1.11.0+cpu
|
5 |
GPU Enabled: False
|
6 |
-
Numpy: 1.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.1a6
|
4 |
PyTorch: 1.11.0+cpu
|
5 |
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1287e5a758782bf6750be702e811de23b3181737a983f31b2af6b062ecc5832e
|
3 |
+
size 163345
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -230.42289380000003, "std_reward": 142.53933962970044, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-24T22:05:42.793806"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64d86e8a9902ea1331859979b2116525b315535c88e8101d21b1b235f8143864
|
3 |
+
size 18474
|