RecurrentPPO Agent playing CarRacing-v0
This is a trained model of a RecurrentPPO agent playing CarRacing-v0 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo_lstm --env CarRacing-v0 -orga sb3 -f logs/
python enjoy.py --algo ppo_lstm --env CarRacing-v0 -f logs/
Training (with the RL Zoo)
python train.py --algo ppo_lstm --env CarRacing-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo_lstm --env CarRacing-v0 -f logs/ -orga sb3
Hyperparameters
OrderedDict([('batch_size', 128),
('clip_range', 0.2),
('ent_coef', 0.0),
('env_wrapper',
[{'gym.wrappers.resize_observation.ResizeObservation': {'shape': 64}},
{'gym.wrappers.gray_scale_observation.GrayScaleObservation': {'keep_dim': True}}]),
('frame_stack', 2),
('gae_lambda', 0.95),
('gamma', 0.99),
('learning_rate', 'lin_1e-4'),
('max_grad_norm', 0.5),
('n_envs', 8),
('n_epochs', 10),
('n_steps', 512),
('n_timesteps', 4000000.0),
('normalize', "{'norm_obs': False, 'norm_reward': True}"),
('policy', 'CnnLstmPolicy'),
('policy_kwargs',
'dict(log_std_init=-2, ortho_init=False, '
'enable_critic_lstm=False, activation_fn=nn.GELU, '
'lstm_hidden_size=128, )'),
('sde_sample_freq', 4),
('use_sde', True),
('vf_coef', 0.5),
('normalize_kwargs', {'norm_obs': False, 'norm_reward': False})])
Environment Arguments
{'verbose': 0}
- Downloads last month
- 11
Evaluation results
- mean_reward on CarRacing-v0self-reported880.39 +/- 31.90