TD3 Agent playing MountainCarContinuous-v0

This is a trained model of a TD3 agent playing MountainCarContinuous-v0 using the stable-baselines3 library and the RL Zoo.

The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.

Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo td3 --env MountainCarContinuous-v0 -orga sb3 -f logs/
python enjoy.py --algo td3 --env MountainCarContinuous-v0  -f logs/

Training (with the RL Zoo)

python train.py --algo td3 --env MountainCarContinuous-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo td3 --env MountainCarContinuous-v0 -f logs/ -orga sb3

Hyperparameters

OrderedDict([('n_timesteps', 300000),
             ('noise_std', 0.5),
             ('noise_type', 'ornstein-uhlenbeck'),
             ('policy', 'MlpPolicy'),
             ('normalize', False)])
Downloads last month
13
Video Preview
loading

Evaluation results

  • mean_reward on MountainCarContinuous-v0
    self-reported
    93.46 +/- 0.05