akiFQCint commited on
Commit
a80319c
1 Parent(s): 5072705

update readme

Browse files
Files changed (2) hide show
  1. README.md +5 -12
  2. README_JA.md +4 -4
README.md CHANGED
@@ -20,15 +20,13 @@ datasets:
20
  - sentence-transformers/NQ-retrieval
21
  - sbintuitions/JSQuAD
22
  - SkelterLabsInc/JaQuAD
23
-
24
  ---
25
 
26
  # Sarashina-Embedding-v1-1B
27
 
28
  **[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/README_JA.md)**
29
 
30
-
31
- "Sarashina-Embedding-v1-1B" is a Japanese text embedding model, based on the 1.2B-parameter Japansese LLM "Sarashina".
32
  We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score in the average of 16 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark).
33
 
34
  This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
@@ -36,17 +34,15 @@ This model maps sentences & paragraphs to a 1792-dimensional dense vector space
36
  ## Model Details
37
 
38
  ### Model Description
 
39
  - **Model Type:** Sentence Transformer
40
- <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
41
  - **Maximum Sequence Length:** 8,192 tokens
42
  - **Output Dimensionality:** 1,792 dimensions
43
  - **Similarity Function:** Cosine Similarity
44
  - **Language:** Japanese
45
  - **License:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)
46
 
47
-
48
-
49
-
50
  ### Full Model Architecture
51
 
52
  ```
@@ -67,6 +63,7 @@ pip install -U sentence-transformers
67
  ```
68
 
69
  Then you can load this model and run inference.
 
70
  ```python
71
  from sentence_transformers import SentenceTransformer
72
 
@@ -119,13 +116,10 @@ To achieve generic text embedding performance across a wide range of domains, we
119
  |||
120
  |**total**|**126,744,763**|
121
 
122
-
123
-
124
  ### Step2: Supervised Fine-tuning
125
 
126
  To enable the model to learn a more accurate query-document similarity, we performed supervised fine-tuning using the following dataset.
127
 
128
-
129
  # Evaluation Results with [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)
130
 
131
  Model |Max Tokens|Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
@@ -138,9 +132,8 @@ To enable the model to learn a more accurate query-document similarity, we perfo
138
  |||
139
  |[**sarashina-embedding-v1-1b**](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b)(This model)|**8192**|**75.50**|**77.61**|82.71|**78.37**|**93.74**|**53.86**|62.00|
140
 
141
-
142
  ## License
143
 
144
  This model is licensed under [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE).
145
 
146
- **If you are interested in using this model for commercial purposes, please feel free to contact us through our [contact page](https://www.sbintuitions.co.jp/#contact).**
 
20
  - sentence-transformers/NQ-retrieval
21
  - sbintuitions/JSQuAD
22
  - SkelterLabsInc/JaQuAD
 
23
  ---
24
 
25
  # Sarashina-Embedding-v1-1B
26
 
27
  **[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/README_JA.md)**
28
 
29
+ "Sarashina-Embedding-v1-1B" is a Japanese text embedding model, based on the 1.2B-parameter Japansese LLM "[Sarashina2.1-1B](https://huggingface.co/sbintuitions/sarashina2.1-1b)".
 
30
  We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score in the average of 16 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark).
31
 
32
  This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
 
34
  ## Model Details
35
 
36
  ### Model Description
37
+
38
  - **Model Type:** Sentence Transformer
39
+ - **Base model:** [Sarashina2.1-1B](https://huggingface.co/sbintuitions/sarashina2.1-1b)
40
  - **Maximum Sequence Length:** 8,192 tokens
41
  - **Output Dimensionality:** 1,792 dimensions
42
  - **Similarity Function:** Cosine Similarity
43
  - **Language:** Japanese
44
  - **License:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)
45
 
 
 
 
46
  ### Full Model Architecture
47
 
48
  ```
 
63
  ```
64
 
65
  Then you can load this model and run inference.
66
+
67
  ```python
68
  from sentence_transformers import SentenceTransformer
69
 
 
116
  |||
117
  |**total**|**126,744,763**|
118
 
 
 
119
  ### Step2: Supervised Fine-tuning
120
 
121
  To enable the model to learn a more accurate query-document similarity, we performed supervised fine-tuning using the following dataset.
122
 
 
123
  # Evaluation Results with [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)
124
 
125
  Model |Max Tokens|Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
 
132
  |||
133
  |[**sarashina-embedding-v1-1b**](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b)(This model)|**8192**|**75.50**|**77.61**|82.71|**78.37**|**93.74**|**53.86**|62.00|
134
 
 
135
  ## License
136
 
137
  This model is licensed under [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE).
138
 
139
+ **If you are interested in using this model for commercial purposes, please feel free to contact us through our [contact page](https://www.sbintuitions.co.jp/#contact).**
README_JA.md CHANGED
@@ -22,7 +22,7 @@ datasets:
22
 
23
  # Sarashina-Embedding-v1-1B
24
 
25
- 「Sarashina-embedding-v1-1b」は、1.2Bパラメータの日本語LLM「Sarashina」をベースにした日本語テキスト埋め込みモデルです。
26
 
27
  このモデルは、マルチステージの対照学習で訓練し、 [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark)の16個のデータセットの平均で、(2024/12/1時点で)最高水準の平均スコアを達成しました。
28
 
@@ -33,13 +33,13 @@ datasets:
33
  ### モデル説明
34
 
35
  - **モデルタイプ:** Sentence Transformer
 
36
  - **最大シーケンス長:** 8,192トークン
37
  - **出力次元数:** 1,792次元
38
  - **類似度関数:** コサイン類似度
39
  - **言語:** 日本語
40
  - **ライセンス:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)
41
 
42
-
43
  ### モデルアーキテクチャ
44
 
45
  ```
@@ -142,6 +142,6 @@ print(similarities.shape)
142
 
143
  ## ライセンス
144
 
145
- このモデルは[Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)に基づいて公開されています.
146
 
147
- **もしこのモデルの商用利用に興味がある場合は、気軽に[コンタクトページ](https://www.sbintuitions.co.jp/#contact)にご連絡ください。**
 
22
 
23
  # Sarashina-Embedding-v1-1B
24
 
25
+ 「Sarashina-embedding-v1-1b」は、1.2Bパラメータの日本語LLM「[Sarashina2.1-1B](https://huggingface.co/sbintuitions/sarashina2.1-1b)」をベースにした日本語テキスト埋め込みモデルです。
26
 
27
  このモデルは、マルチステージの対照学習で訓練し、 [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark)の16個のデータセットの平均で、(2024/12/1時点で)最高水準の平均スコアを達成しました。
28
 
 
33
  ### モデル説明
34
 
35
  - **モデルタイプ:** Sentence Transformer
36
+ - **ベースモデル:** [Sarashina2.1-1B](https://huggingface.co/sbintuitions/sarashina2.1-1b)
37
  - **最大シーケンス長:** 8,192トークン
38
  - **出力次元数:** 1,792次元
39
  - **類似度関数:** コサイン類似度
40
  - **言語:** 日本語
41
  - **ライセンス:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)
42
 
 
43
  ### モデルアーキテクチャ
44
 
45
  ```
 
142
 
143
  ## ライセンス
144
 
145
+ このモデルは[Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)に基づいて公開されています.
146
 
147
+ **もしこのモデルの商用利用に興味がある場合は、気軽に[コンタクトページ](https://www.sbintuitions.co.jp/#contact)にご連絡ください。**