kunato's picture
Update README.md
b97b729 verified
metadata
license: llama3
language:
  - en
  - th
pipeline_tag: text-generation
tags:
  - instruct
  - chat

Llama-3-Typhoon-1.5-8B: Thai Large Language Model (Instruct)

Llama-3-Typhoon-1.5-8B-instruct is a instruct Thai 🇹🇭 large language model with 8 billion parameters, and it is based on Llama3-8B.

Typhoon 1.5 8b benchmark

For release post, please see our blog. *To acknowledge Meta's effort in creating the foundation model and to comply with the license, we explicitly include "llama-3" in the model name.

Model Description

  • Model type: A 8B instruct decoder-only model based on Llama architecture.
  • Requirement: transformers 4.38.0 or newer.
  • Primary Language(s): Thai 🇹🇭 and English 🇬🇧
  • License: Llama 3 Community License

Performance

Model ONET IC TGAT TPAT-1 A-Level Average (ThaiExam) M3Exam MMLU
Typhoon-1.0 (Mistral) 0.379 0.393 0.700 0.414 0.324 0.442 0.391 0.547
Typhoon-1.5 8B (Llama3) 0.446 0.431 0.722 0.526 0.407 0.506 0.460 0.614
Sailor 7B 0.372 0.379 0.678 0.405 0.396 0.446 0.411 0.553
SeaLLM 2.0 7B 0.327 0.311 0.656 0.414 0.321 0.406 0.354 0.579
OpenThaiGPT 1.0.0 7B 0.238 0.249 0.444 0.319 0.289 0.308 0.268 0.369
SambaLingo-Thai-Chat 7B 0.251 0.241 0.522 0.302 0.262 0.316 0.309 0.388

Usage Example

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "scb10x/llama-3-typhoon-v1.5-8b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a helpful assistant who're always speak Thai."},
    {"role": "user", "content": "ขอสูตรไก่ย่าง"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=512,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.4,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Chat Template

We use llama3 chat-template.

{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}

Intended Uses & Limitations

This model is an instructional model. However, it’s still undergoing development. It incorporates some level of guardrails, but it still may produce answers that are inaccurate, biased, or otherwise objectionable in response to user prompts. We recommend that developers assess these risks in the context of their use case.

Follow us

https://twitter.com/opentyphoon

Support

https://discord.gg/CqyBscMFpg

SCB10X AI Team

  • Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
  • If you find Typhoon-8B useful for your work, please cite it using:
@article{pipatanakul2023typhoon,
    title={Typhoon: Thai Large Language Models}, 
    author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
    year={2023},
    journal={arXiv preprint arXiv:2312.13951},
    url={https://arxiv.org/abs/2312.13951}
}

Contact Us