ModernBERT_wine_quality_reviews_ft

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6671
  • Accuracy: 0.7019
  • F1: 0.7024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8,0.8) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.1457 0.0826 350 0.9894 0.5461 0.5305
0.9441 0.1653 700 1.1213 0.4977 0.4827
0.8589 0.2479 1050 0.8232 0.6297 0.6277
0.8131 0.3306 1400 0.8268 0.6177 0.5956
0.7837 0.4132 1750 0.7474 0.6679 0.6663
0.7726 0.4959 2100 0.8008 0.6397 0.6269
0.7576 0.5785 2450 0.7571 0.6533 0.6550
0.7528 0.6612 2800 0.7414 0.6666 0.6598
0.7588 0.7438 3150 0.7627 0.6588 0.6397
0.7416 0.8264 3500 0.7259 0.6736 0.6739
0.7303 0.9091 3850 0.7052 0.6847 0.6812
0.7313 0.9917 4200 0.7059 0.6860 0.6799
0.6647 1.0744 4550 0.7002 0.6890 0.6887
0.6606 1.1570 4900 0.7712 0.6583 0.6502
0.65 1.2397 5250 0.6868 0.6917 0.6904
0.6464 1.3223 5600 0.7371 0.6757 0.6673
0.6494 1.4050 5950 0.7323 0.6751 0.6724
0.6505 1.4876 6300 0.6952 0.6877 0.6856
0.6499 1.5702 6650 0.6935 0.6893 0.6812
0.6399 1.6529 7000 0.7099 0.6873 0.6826
0.632 1.7355 7350 0.6912 0.6942 0.6915
0.6488 1.8182 7700 0.6741 0.6971 0.6972
0.6331 1.9008 8050 0.6881 0.6933 0.6932
0.6339 1.9835 8400 0.6671 0.7019 0.7024
0.4914 2.0661 8750 0.7598 0.6989 0.6982
0.4498 2.1488 9100 0.7617 0.6997 0.6996
0.4407 2.2314 9450 0.7674 0.6950 0.6945
0.4468 2.3140 9800 0.7978 0.6946 0.6932
0.4486 2.3967 10150 0.7718 0.6929 0.6926
0.4462 2.4793 10500 0.7928 0.6808 0.6811
0.4483 2.5620 10850 0.7678 0.6957 0.6966
0.4347 2.6446 11200 0.7687 0.6935 0.6938
0.4429 2.7273 11550 0.7496 0.6969 0.6973
0.4415 2.8099 11900 0.7621 0.6968 0.6963

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
60
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for scbtm/ModernBERT_wine_quality_reviews_ft

Finetuned
(209)
this model