|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- jnlpba |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: biobert-base-cased-v1.2-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: jnlpba |
|
type: jnlpba |
|
args: jnlpba |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8948080842655547 |
|
- name: Recall |
|
type: recall |
|
value: 0.9282417121275703 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9112183219652858 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9601644367242017 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# biobert-base-cased-v1.2-finetuned-ner |
|
|
|
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1265 |
|
- Precision: 0.8948 |
|
- Recall: 0.9282 |
|
- F1: 0.9112 |
|
- Accuracy: 0.9602 |
|
|
|
## Model description |
|
|
|
BioBERT fine-tuned on JNLPBA dataset for NER in Biomedical. |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2278 | 1.0 | 1858 | 0.1826 | 0.8415 | 0.8815 | 0.8610 | 0.9384 | |
|
| 0.151 | 2.0 | 3716 | 0.1443 | 0.8756 | 0.9162 | 0.8955 | 0.9530 | |
|
| 0.1157 | 3.0 | 5574 | 0.1265 | 0.8948 | 0.9282 | 0.9112 | 0.9602 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.0.dev0 |
|
- Pytorch 1.9.1+cu102 |
|
- Datasets 1.12.1 |
|
- Tokenizers 0.10.3 |
|
|