sciarrilli's picture
Update README.md
5e2284e
|
raw
history blame
2.23 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - jnlpba
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: biobert-base-cased-v1.2-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: jnlpba
          type: jnlpba
          args: jnlpba
        metrics:
          - name: Precision
            type: precision
            value: 0.8948080842655547
          - name: Recall
            type: recall
            value: 0.9282417121275703
          - name: F1
            type: f1
            value: 0.9112183219652858
          - name: Accuracy
            type: accuracy
            value: 0.9601644367242017

biobert-base-cased-v1.2-finetuned-ner

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the jnlpba dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1265
  • Precision: 0.8948
  • Recall: 0.9282
  • F1: 0.9112
  • Accuracy: 0.9602

Model description

BioBERT fine-tuned on JNLPBA dataset for NER in Biomedical.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2278 1.0 1858 0.1826 0.8415 0.8815 0.8610 0.9384
0.151 2.0 3716 0.1443 0.8756 0.9162 0.8955 0.9530
0.1157 3.0 5574 0.1265 0.8948 0.9282 0.9112 0.9602

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.9.1+cu102
  • Datasets 1.12.1
  • Tokenizers 0.10.3