scott-clare1's picture
Training in progress epoch 2
ff8e790
|
raw
history blame
2 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_keras_callback
model-index:
  - name: scott-clare1/multi-language-sms-detection
    results: []

scott-clare1/multi-language-sms-detection

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0098
  • Validation Loss: 0.0282
  • Train Precision: 0.9825
  • Train Recall: 0.9852
  • Train F1: 0.9838
  • Train Accuracy: 0.9934
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2487, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.0191 0.0275 0.9832 0.9848 0.9840 0.9932 0
0.0116 0.0282 0.9825 0.9852 0.9838 0.9934 1
0.0098 0.0282 0.9825 0.9852 0.9838 0.9934 2

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.12.0
  • Datasets 2.14.1
  • Tokenizers 0.13.3