easylm-rm-gemma-2-9b
This model is a fine-tuned version of scottsuk0306/easylm-sft-gemma-2-9b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6317
- Accuracy: 0.6771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.662 | 0.0667 | 10 | 0.7110 | 0.5833 |
0.6752 | 0.1333 | 20 | 0.6839 | 0.5938 |
0.682 | 0.2 | 30 | 0.6653 | 0.6875 |
0.678 | 0.2667 | 40 | 0.6628 | 0.7188 |
0.6591 | 0.3333 | 50 | 0.6403 | 0.6458 |
0.6591 | 0.4 | 60 | 0.6619 | 0.7083 |
0.6324 | 0.4667 | 70 | 0.6534 | 0.6875 |
0.6812 | 0.5333 | 80 | 0.6372 | 0.6667 |
0.6562 | 0.6 | 90 | 0.6301 | 0.6667 |
0.6534 | 0.6667 | 100 | 0.6283 | 0.7083 |
0.6479 | 0.7333 | 110 | 0.6286 | 0.6875 |
0.651 | 0.8 | 120 | 0.6281 | 0.6979 |
0.6612 | 0.8667 | 130 | 0.6297 | 0.6979 |
0.634 | 0.9333 | 140 | 0.6300 | 0.7083 |
0.6311 | 1.0 | 150 | 0.6317 | 0.6771 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5