Qwen2-VL-2B-Instruct-GGUF

Original Model

Qwen/Qwen2-VL-2B-Instruct

Run with LlamaEdge

  • LlamaEdge version: v0.16.0

  • Prompt template

    • Prompt type: qwen2-vision

    • Prompt string

      <|im_start|>system
      {system_prompt}<|im_end|>
      <|im_start|>user
      <|vision_start|>{image_placeholder}<|vision_end|>{user_prompt}<|im_end|>
      <|im_start|>assistant
      
  • Context size: 32000

  • Run as LlamaEdge service

    wasmedge --dir .:. \
      --nn-preload default:GGML:AUTO:Qwen2-VL-2B-Instruct-Q5_K_M.gguf \
      llama-api-server.wasm \
      --model-name Qwen2-VL-2B-Instruct \
      --prompt-template qwen2-vision \
      --llava-mmproj Qwen2-VL-2B-Instruct-vision-encoder.gguf \
      --ctx-size 32000
    

Quantized GGUF Models

Name Quant method Bits Size Use case
Qwen2-VL-2B-Instruct-Q2_K.gguf Q2_K 2 676 MB smallest, significant quality loss - not recommended for most purposes
Qwen2-VL-2B-Instruct-Q3_K_L.gguf Q3_K_L 3 880 MB small, substantial quality loss
Qwen2-VL-2B-Instruct-Q3_K_M.gguf Q3_K_M 3 824 MB very small, high quality loss
Qwen2-VL-2B-Instruct-Q3_K_S.gguf Q3_K_S 3 761 MB very small, high quality loss
Qwen2-VL-2B-Instruct-Q4_0.gguf Q4_0 4 935 MB legacy; small, very high quality loss - prefer using Q3_K_M
Qwen2-VL-2B-Instruct-Q4_K_M.gguf Q4_K_M 4 986 MB medium, balanced quality - recommended
Qwen2-VL-2B-Instruct-Q4_K_S.gguf Q4_K_S 4 940 MB small, greater quality loss
Qwen2-VL-2B-Instruct-Q5_0.gguf Q5_0 5 1.10 GB legacy; medium, balanced quality - prefer using Q4_K_M
Qwen2-VL-2B-Instruct-Q5_K_M.gguf Q5_K_M 5 1.13 GB large, very low quality loss - recommended
Qwen2-VL-2B-Instruct-Q5_K_S.gguf Q5_K_S 5 1.10 GB large, low quality loss - recommended
Qwen2-VL-2B-Instruct-Q6_K.gguf Q6_K 6 1.27 GB very large, extremely low quality loss
Qwen2-VL-2B-Instruct-Q8_0.gguf Q8_0 8 1.65 GB very large, extremely low quality loss - not recommended
Qwen2-VL-2B-Instruct-f16.gguf f16 16 3.09 GB
Qwen2-VL-2B-Instruct-vision-encoder.gguf f16 16 2.66 GB

Quantized with llama.cpp b4329

Downloads last month
527
GGUF
Model size
1.54B params
Architecture
qwen2vl

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for second-state/Qwen2-VL-2B-Instruct-GGUF

Base model

Qwen/Qwen2-VL-2B
Quantized
(21)
this model

Collection including second-state/Qwen2-VL-2B-Instruct-GGUF