|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: taskA-DeBERTa-large-conf-1.0.0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# taskA-DeBERTa-large-conf-1.0.0 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0557 |
|
- Accuracy: 0.8003 |
|
- Precision: 0.6080 |
|
- Recall: 0.5677 |
|
- F1: 0.5872 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.5219 | 0.39 | 500 | 0.5422 | 0.8147 | 0.725 | 0.4179 | 0.5302 | |
|
| 0.5372 | 0.78 | 1000 | 0.6654 | 0.7873 | 0.9194 | 0.1643 | 0.2787 | |
|
| 0.4255 | 1.16 | 1500 | 0.7670 | 0.8133 | 0.6774 | 0.4841 | 0.5647 | |
|
| 0.3873 | 1.55 | 2000 | 1.2863 | 0.7592 | 0.5132 | 0.7262 | 0.6014 | |
|
| 0.4026 | 1.94 | 2500 | 0.9782 | 0.7967 | 0.5964 | 0.5793 | 0.5877 | |
|
| 0.2893 | 2.33 | 3000 | 1.0557 | 0.8003 | 0.6080 | 0.5677 | 0.5872 | |
|
| 0.2513 | 2.71 | 3500 | 1.2664 | 0.7779 | 0.5470 | 0.6542 | 0.5958 | |
|
| 0.231 | 3.1 | 4000 | 1.2628 | 0.7895 | 0.5745 | 0.6110 | 0.5922 | |
|
| 0.1684 | 3.49 | 4500 | 1.1848 | 0.8061 | 0.6211 | 0.5764 | 0.5979 | |
|
| 0.1647 | 3.88 | 5000 | 1.2085 | 0.8068 | 0.6262 | 0.5648 | 0.5939 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|