seek007's picture
Upload tokenizer
3095aa7 verified
metadata
license: mit
tags:
  - generated_from_trainer
base_model: microsoft/deberta-v3-large
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: taskA-DeBERTa-large-conf-1.0.0
    results: []

taskA-DeBERTa-large-conf-1.0.0

This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0557
  • Accuracy: 0.8003
  • Precision: 0.6080
  • Recall: 0.5677
  • F1: 0.5872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5219 0.39 500 0.5422 0.8147 0.725 0.4179 0.5302
0.5372 0.78 1000 0.6654 0.7873 0.9194 0.1643 0.2787
0.4255 1.16 1500 0.7670 0.8133 0.6774 0.4841 0.5647
0.3873 1.55 2000 1.2863 0.7592 0.5132 0.7262 0.6014
0.4026 1.94 2500 0.9782 0.7967 0.5964 0.5793 0.5877
0.2893 2.33 3000 1.0557 0.8003 0.6080 0.5677 0.5872
0.2513 2.71 3500 1.2664 0.7779 0.5470 0.6542 0.5958
0.231 3.1 4000 1.2628 0.7895 0.5745 0.6110 0.5922
0.1684 3.49 4500 1.1848 0.8061 0.6211 0.5764 0.5979
0.1647 3.88 5000 1.2085 0.8068 0.6262 0.5648 0.5939

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2