selmamalak's picture
End of training
9d78380 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: blood-beit-base-finetuned
    results: []

blood-beit-base-finetuned

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0847
  • Accuracy: 0.9737
  • Precision: 0.9726
  • Recall: 0.9724
  • F1: 0.9724

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4657 1.0 187 0.2452 0.9095 0.8964 0.9083 0.8973
0.4327 2.0 374 0.2111 0.9182 0.9299 0.8921 0.9007
0.3977 3.0 561 0.1743 0.9340 0.9229 0.9282 0.9244
0.3318 4.0 748 0.1776 0.9352 0.9248 0.9353 0.9285
0.3461 5.0 935 0.1703 0.9381 0.9311 0.9344 0.9305
0.3309 6.0 1122 0.1956 0.9369 0.9336 0.9397 0.9335
0.3088 7.0 1309 0.1179 0.9533 0.9427 0.9525 0.9461
0.2129 8.0 1496 0.0992 0.9638 0.9569 0.9674 0.9611
0.2049 9.0 1683 0.0847 0.9679 0.9627 0.9683 0.9651
0.2007 10.0 1870 0.0785 0.9708 0.9668 0.9737 0.9698

Framework versions

  • PEFT 0.11.1
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1