|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k |
|
datasets: |
|
- medmnist-v2 |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: breastmnist-beit-base-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# breastmnist-beit-base-finetuned |
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the medmnist-v2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5228 |
|
- Accuracy: 0.7308 |
|
- Precision: 0.3654 |
|
- Recall: 0.5 |
|
- F1: 0.4222 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 0.9143 | 8 | 0.8325 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.7315 | 1.9429 | 17 | 0.5744 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.6223 | 2.9714 | 26 | 0.5911 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.5815 | 4.0 | 35 | 0.5743 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.5627 | 4.9143 | 43 | 0.6546 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.5552 | 5.9429 | 52 | 0.5381 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.536 | 6.9714 | 61 | 0.5101 | 0.7949 | 0.8904 | 0.6190 | 0.6308 | |
|
| 0.5454 | 8.0 | 70 | 0.5273 | 0.7692 | 0.7246 | 0.6165 | 0.6286 | |
|
| 0.5454 | 8.9143 | 78 | 0.5176 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
| 0.5058 | 9.1429 | 80 | 0.5228 | 0.7308 | 0.3654 | 0.5 | 0.4222 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |