selmamalak's picture
End of training
dd053e9 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
model-index:
  - name: chest-beit-base-finetuned
    results: []

chest-beit-base-finetuned

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2620
  • Accuracy: 0.9107
  • Precision: 0.8923
  • Recall: 0.8923
  • F1: 0.8923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4775 0.99 63 0.2264 0.9142 0.8850 0.8962 0.8903
0.7117 1.99 127 0.4008 0.7391 0.3695 0.5 0.4250
0.4115 3.0 191 0.4358 0.8155 0.7871 0.8645 0.7957
0.3631 4.0 255 0.3091 0.8798 0.8381 0.8708 0.8518
0.3794 4.99 318 0.2802 0.8798 0.8393 0.8623 0.8495
0.3713 5.99 382 0.2805 0.8773 0.8371 0.8542 0.8449
0.3953 7.0 446 0.3397 0.8584 0.8185 0.8872 0.8367
0.3218 8.0 510 0.3072 0.8670 0.8257 0.8898 0.8448
0.3219 8.99 573 0.2633 0.8961 0.8582 0.8872 0.8708
0.3049 9.88 630 0.2739 0.8927 0.8528 0.8912 0.8685

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2