selmamalak's picture
End of training
af30143 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
model-index:
  - name: derma-beit-base-finetuned
    results: []

derma-beit-base-finetuned

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6240
  • Accuracy: 0.7561
  • Precision: 0.5742
  • Recall: 0.5353
  • F1: 0.5271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9135 1.0 109 0.7698 0.7198 0.5179 0.3103 0.3050
0.8352 2.0 219 0.7352 0.7298 0.5362 0.4231 0.3884
0.7891 3.0 328 0.7575 0.7178 0.3954 0.4000 0.3667
0.7649 4.0 438 0.6879 0.7418 0.5009 0.3972 0.4146
0.8146 5.0 547 0.7471 0.7178 0.4490 0.4141 0.3641
0.6831 6.0 657 0.7007 0.7368 0.4777 0.4148 0.4252
0.695 7.0 766 0.6797 0.7428 0.4638 0.5334 0.4841
0.6646 8.0 876 0.6534 0.7537 0.6130 0.5077 0.4933
0.675 9.0 985 0.6238 0.7667 0.6518 0.5431 0.5308
0.6145 9.95 1090 0.6096 0.7727 0.6427 0.5346 0.5283

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2