selmamalak's picture
End of training
362a524 verified
|
raw
history blame
2.64 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: pneumoniamnist-beit-base-finetuned
    results: []

pneumoniamnist-beit-base-finetuned

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3960
  • Accuracy: 0.8446
  • Precision: 0.8354
  • Recall: 0.8312
  • F1: 0.8332

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5947 0.9898 73 0.5165 0.7424 0.3712 0.5 0.4261
0.4888 1.9932 147 0.3450 0.8569 0.8116 0.8190 0.8151
0.4022 2.9966 221 0.4225 0.8340 0.7914 0.8567 0.8079
0.4319 4.0 295 0.3600 0.8588 0.8123 0.8589 0.8292
0.3836 4.9898 368 0.3665 0.8511 0.8054 0.8610 0.8233
0.3887 5.9932 442 0.3667 0.8645 0.8197 0.8749 0.8383
0.3947 6.9966 516 0.3951 0.8531 0.8098 0.8744 0.8283
0.3741 8.0 590 0.3449 0.8683 0.8229 0.8678 0.8398
0.3964 8.9898 663 0.3625 0.8588 0.8128 0.8638 0.8305
0.3845 9.8983 730 0.3569 0.8569 0.8111 0.8649 0.8292

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1