SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/bge-m3")
# Run inference
sentences = [
'메이지 유신 시기에 폐번치현이 언제 단행되었나요?',
"메이지 4년(1871년)2월, 산조 저택에 이와쿠라, 오쿠보, 사이고, 기도, 이타가키등 정부 수뇌가 모여 폐번치현에 대비하여 번의 지휘권에 속하지 않는 천황 직속의 고신베이를 만들 필요가 있다는 의견에 일치. 사쓰마, 조슈, 도사의 세 번에 병사를 두도록 명하여, 8000명의 병사가 급히 조직되었다. 7월 14일 메이지 천황이 전 지사를 고쿄로 불러내어, 폐번치현을 선고하였다. 정부의 예상과는 달리 모든 지사가 찬동하여 염려하였던 저항이나 반항은 전혀 보이지 않았고, 이 날로 '번'은 하나도 남지 않고 일본에서 소멸되었다. 영지를 잃은 ‘다이묘’들은 전원 도쿄로 소집되어, 화족으로써의 책무를 다한 것이 되었다. 이리하여 일본은 하나의 국가, 한사람의 원수의 아래에 근대통일국가로써 시작하게 되었다.",
'메이지 원년(1868년) 보신 전쟁 때, 미쓰카이치 번은 시바타 번과 행동을 함께 했다. 이듬해 판적봉환이 이루어지면서 노리타다는 미쓰카치이 번지사가 되었고, 메이지 4년(1871년) 7월 14일 폐번치현으로 면직되었다. 미쓰카이치 번도 이때 폐지되어 미쓰카이치 현이 되었다가, 같은해 11월 20일, 니가타현에 편입되었다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
gradient_accumulation_steps
: 8learning_rate
: 0.0001adam_epsilon
: 1e-07num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truedataloader_drop_last
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-07max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0018 | 1 | 0.9287 |
0.0035 | 2 | 0.8795 |
0.0053 | 3 | 0.7323 |
0.0071 | 4 | 0.8168 |
0.0088 | 5 | 0.8891 |
0.0106 | 6 | 0.8382 |
0.0124 | 7 | 0.751 |
0.0142 | 8 | 0.8765 |
0.0159 | 9 | 0.6881 |
0.0177 | 10 | 0.7446 |
0.0195 | 11 | 0.5825 |
0.0212 | 12 | 0.6931 |
0.0230 | 13 | 0.6806 |
0.0248 | 14 | 0.5909 |
0.0265 | 15 | 0.7772 |
0.0283 | 16 | 0.618 |
0.0301 | 17 | 0.6316 |
0.0318 | 18 | 0.5642 |
0.0336 | 19 | 0.4686 |
0.0354 | 20 | 0.5431 |
0.0372 | 21 | 0.6239 |
0.0389 | 22 | 0.6386 |
0.0407 | 23 | 0.7793 |
0.0425 | 24 | 0.4454 |
0.0442 | 25 | 0.4976 |
0.0460 | 26 | 0.5601 |
0.0478 | 27 | 0.5978 |
0.0495 | 28 | 0.5229 |
0.0513 | 29 | 0.536 |
0.0531 | 30 | 0.5151 |
0.0548 | 31 | 0.6601 |
0.0566 | 32 | 0.7382 |
0.0584 | 33 | 0.4538 |
0.0602 | 34 | 0.4374 |
0.0619 | 35 | 0.5382 |
0.0637 | 36 | 0.6438 |
0.0655 | 37 | 0.6456 |
0.0672 | 38 | 0.4794 |
0.0690 | 39 | 0.5547 |
0.0708 | 40 | 0.5454 |
0.0725 | 41 | 0.6481 |
0.0743 | 42 | 0.4435 |
0.0761 | 43 | 0.5318 |
0.0778 | 44 | 0.6393 |
0.0796 | 45 | 0.5986 |
0.0814 | 46 | 0.5288 |
0.0831 | 47 | 0.4729 |
0.0849 | 48 | 0.5356 |
0.0867 | 49 | 0.5965 |
0.0885 | 50 | 0.5614 |
0.0902 | 51 | 0.4382 |
0.0920 | 52 | 0.5069 |
0.0938 | 53 | 0.4223 |
0.0955 | 54 | 0.5828 |
0.0973 | 55 | 0.6139 |
0.0991 | 56 | 0.6316 |
0.1008 | 57 | 0.4838 |
0.1026 | 58 | 0.4764 |
0.1044 | 59 | 0.4956 |
0.1061 | 60 | 0.5174 |
0.1079 | 61 | 0.6608 |
0.1097 | 62 | 0.6359 |
0.1115 | 63 | 0.6471 |
0.1132 | 64 | 0.5463 |
0.1150 | 65 | 0.4316 |
0.1168 | 66 | 0.5231 |
0.1185 | 67 | 0.4882 |
0.1203 | 68 | 0.5099 |
0.1221 | 69 | 0.6045 |
0.1238 | 70 | 0.6246 |
0.1256 | 71 | 0.4859 |
0.1274 | 72 | 0.5487 |
0.1291 | 73 | 0.6231 |
0.1309 | 74 | 0.5117 |
0.1327 | 75 | 0.5257 |
0.1345 | 76 | 0.634 |
0.1362 | 77 | 0.6379 |
0.1380 | 78 | 0.5938 |
0.1398 | 79 | 0.6219 |
0.1415 | 80 | 0.6745 |
0.1433 | 81 | 0.5874 |
0.1451 | 82 | 0.5805 |
0.1468 | 83 | 0.6183 |
0.1486 | 84 | 0.5967 |
0.1504 | 85 | 0.5625 |
0.1521 | 86 | 0.56 |
0.1539 | 87 | 0.5423 |
0.1557 | 88 | 0.5155 |
0.1575 | 89 | 0.4188 |
0.1592 | 90 | 0.4489 |
0.1610 | 91 | 0.4199 |
0.1628 | 92 | 0.6389 |
0.1645 | 93 | 0.4987 |
0.1663 | 94 | 0.356 |
0.1681 | 95 | 0.645 |
0.1698 | 96 | 0.6058 |
0.1716 | 97 | 0.5401 |
0.1734 | 98 | 0.5984 |
0.1751 | 99 | 0.5249 |
0.1769 | 100 | 0.5264 |
0.1787 | 101 | 0.6159 |
0.1805 | 102 | 0.5916 |
0.1822 | 103 | 0.5023 |
0.1840 | 104 | 0.7227 |
0.1858 | 105 | 0.5136 |
0.1875 | 106 | 0.6373 |
0.1893 | 107 | 0.6511 |
0.1911 | 108 | 0.6405 |
0.1928 | 109 | 0.454 |
0.1946 | 110 | 0.6881 |
0.1964 | 111 | 0.7013 |
0.1981 | 112 | 0.6714 |
0.1999 | 113 | 0.8498 |
0.2017 | 114 | 0.4946 |
0.2034 | 115 | 0.6246 |
0.2052 | 116 | 0.7128 |
0.2070 | 117 | 0.5758 |
0.2088 | 118 | 0.633 |
0.2105 | 119 | 0.5469 |
0.2123 | 120 | 0.5253 |
0.2141 | 121 | 0.5381 |
0.2158 | 122 | 0.5744 |
0.2176 | 123 | 0.4789 |
0.2194 | 124 | 0.5805 |
0.2211 | 125 | 0.6207 |
0.2229 | 126 | 0.5268 |
0.2247 | 127 | 0.6476 |
0.2264 | 128 | 0.5248 |
0.2282 | 129 | 0.3464 |
0.2300 | 130 | 0.4496 |
0.2318 | 131 | 0.6134 |
0.2335 | 132 | 0.5413 |
0.2353 | 133 | 0.5155 |
0.2371 | 134 | 0.5984 |
0.2388 | 135 | 0.6471 |
0.2406 | 136 | 0.5767 |
0.2424 | 137 | 0.4031 |
0.2441 | 138 | 0.4356 |
0.2459 | 139 | 0.4664 |
0.2477 | 140 | 0.7054 |
0.2494 | 141 | 0.4958 |
0.2512 | 142 | 0.5696 |
0.2530 | 143 | 0.5011 |
0.2548 | 144 | 0.5952 |
0.2565 | 145 | 0.4872 |
0.2583 | 146 | 0.5751 |
0.2601 | 147 | 0.6347 |
0.2618 | 148 | 0.6824 |
0.2636 | 149 | 0.531 |
0.2654 | 150 | 0.7025 |
0.2671 | 151 | 0.4048 |
0.2689 | 152 | 0.6253 |
0.2707 | 153 | 0.5461 |
0.2724 | 154 | 0.7396 |
0.2742 | 155 | 0.5136 |
0.2760 | 156 | 0.4704 |
0.2778 | 157 | 0.4535 |
0.2795 | 158 | 0.372 |
0.2813 | 159 | 0.5653 |
0.2831 | 160 | 0.5282 |
0.2848 | 161 | 0.5453 |
0.2866 | 162 | 0.5837 |
0.2884 | 163 | 0.5761 |
0.2901 | 164 | 0.6161 |
0.2919 | 165 | 0.405 |
0.2937 | 166 | 0.6214 |
0.2954 | 167 | 0.411 |
0.2972 | 168 | 0.6529 |
0.2990 | 169 | 0.6642 |
0.3008 | 170 | 0.4985 |
0.3025 | 171 | 0.4257 |
0.3043 | 172 | 0.5372 |
0.3061 | 173 | 0.5431 |
0.3078 | 174 | 0.4973 |
0.3096 | 175 | 0.6549 |
0.3114 | 176 | 0.5224 |
0.3131 | 177 | 0.4476 |
0.3149 | 178 | 0.4718 |
0.3167 | 179 | 0.5344 |
0.3184 | 180 | 0.5656 |
0.3202 | 181 | 0.4768 |
0.3220 | 182 | 0.3768 |
0.3238 | 183 | 0.4206 |
0.3255 | 184 | 0.5402 |
0.3273 | 185 | 0.6454 |
0.3291 | 186 | 0.5776 |
0.3308 | 187 | 0.5703 |
0.3326 | 188 | 0.4107 |
0.3344 | 189 | 0.4764 |
0.3361 | 190 | 0.605 |
0.3379 | 191 | 0.4292 |
0.3397 | 192 | 0.457 |
0.3414 | 193 | 0.4937 |
0.3432 | 194 | 0.51 |
0.3450 | 195 | 0.5098 |
0.3467 | 196 | 0.5767 |
0.3485 | 197 | 0.5132 |
0.3503 | 198 | 0.5998 |
0.3521 | 199 | 0.3802 |
0.3538 | 200 | 0.4518 |
0.3556 | 201 | 0.5625 |
0.3574 | 202 | 0.7021 |
0.3591 | 203 | 0.5112 |
0.3609 | 204 | 0.4492 |
0.3627 | 205 | 0.3903 |
0.3644 | 206 | 0.4139 |
0.3662 | 207 | 0.6053 |
0.3680 | 208 | 0.5281 |
0.3697 | 209 | 0.4487 |
0.3715 | 210 | 0.3983 |
0.3733 | 211 | 0.5477 |
0.3751 | 212 | 0.572 |
0.3768 | 213 | 0.5786 |
0.3786 | 214 | 0.4123 |
0.3804 | 215 | 0.5131 |
0.3821 | 216 | 0.4661 |
0.3839 | 217 | 0.48 |
0.3857 | 218 | 0.5004 |
0.3874 | 219 | 0.5233 |
0.3892 | 220 | 0.4319 |
0.3910 | 221 | 0.4578 |
0.3927 | 222 | 0.5002 |
0.3945 | 223 | 0.6277 |
0.3963 | 224 | 0.4109 |
0.3981 | 225 | 0.6681 |
0.3998 | 226 | 0.3696 |
0.4016 | 227 | 0.6667 |
0.4034 | 228 | 0.5185 |
0.4051 | 229 | 0.5518 |
0.4069 | 230 | 0.4752 |
0.4087 | 231 | 0.4377 |
0.4104 | 232 | 0.5806 |
0.4122 | 233 | 0.4447 |
0.4140 | 234 | 0.5611 |
0.4157 | 235 | 0.6371 |
0.4175 | 236 | 0.6357 |
0.4193 | 237 | 0.483 |
0.4211 | 238 | 0.8846 |
0.4228 | 239 | 0.3929 |
0.4246 | 240 | 0.4226 |
0.4264 | 241 | 0.6122 |
0.4281 | 242 | 0.5454 |
0.4299 | 243 | 0.5696 |
0.4317 | 244 | 0.4731 |
0.4334 | 245 | 0.5638 |
0.4352 | 246 | 0.4026 |
0.4370 | 247 | 0.6631 |
0.4387 | 248 | 0.572 |
0.4405 | 249 | 0.4938 |
0.4423 | 250 | 0.369 |
0.4441 | 251 | 0.4748 |
0.4458 | 252 | 0.5621 |
0.4476 | 253 | 0.5465 |
0.4494 | 254 | 0.4949 |
0.4511 | 255 | 0.3838 |
0.4529 | 256 | 0.6259 |
0.4547 | 257 | 0.4021 |
0.4564 | 258 | 0.5296 |
0.4582 | 259 | 0.3736 |
0.4600 | 260 | 0.6393 |
0.4617 | 261 | 0.4681 |
0.4635 | 262 | 0.5441 |
0.4653 | 263 | 0.4178 |
0.4670 | 264 | 0.4084 |
0.4688 | 265 | 0.4875 |
0.4706 | 266 | 0.589 |
0.4724 | 267 | 0.5376 |
0.4741 | 268 | 0.5175 |
0.4759 | 269 | 0.4991 |
0.4777 | 270 | 0.559 |
0.4794 | 271 | 0.4451 |
0.4812 | 272 | 0.5305 |
0.4830 | 273 | 0.4795 |
0.4847 | 274 | 0.3441 |
0.4865 | 275 | 0.4596 |
0.4883 | 276 | 0.4433 |
0.4900 | 277 | 0.5669 |
0.4918 | 278 | 0.4614 |
0.4936 | 279 | 0.4943 |
0.4954 | 280 | 0.3863 |
0.4971 | 281 | 0.4121 |
0.4989 | 282 | 0.4229 |
0.5007 | 283 | 0.5033 |
0.5024 | 284 | 0.675 |
0.5042 | 285 | 0.5288 |
0.5060 | 286 | 0.4191 |
0.5077 | 287 | 0.5367 |
0.5095 | 288 | 0.5107 |
0.5113 | 289 | 0.4916 |
0.5130 | 290 | 0.4284 |
0.5148 | 291 | 0.5335 |
0.5166 | 292 | 0.5831 |
0.5184 | 293 | 0.4883 |
0.5201 | 294 | 0.4728 |
0.5219 | 295 | 0.5285 |
0.5237 | 296 | 0.4676 |
0.5254 | 297 | 0.6879 |
0.5272 | 298 | 0.5272 |
0.5290 | 299 | 0.5624 |
0.5307 | 300 | 0.5593 |
0.5325 | 301 | 0.4439 |
0.5343 | 302 | 0.4053 |
0.5360 | 303 | 0.4719 |
0.5378 | 304 | 0.4711 |
0.5396 | 305 | 0.4547 |
0.5414 | 306 | 0.5011 |
0.5431 | 307 | 0.4481 |
0.5449 | 308 | 0.408 |
0.5467 | 309 | 0.5667 |
0.5484 | 310 | 0.3552 |
0.5502 | 311 | 0.6648 |
0.5520 | 312 | 0.3842 |
0.5537 | 313 | 0.4724 |
0.5555 | 314 | 0.5586 |
0.5573 | 315 | 0.4365 |
0.5590 | 316 | 0.5099 |
0.5608 | 317 | 0.4732 |
0.5626 | 318 | 0.4542 |
0.5644 | 319 | 0.5091 |
0.5661 | 320 | 0.4554 |
0.5679 | 321 | 0.4214 |
0.5697 | 322 | 0.43 |
0.5714 | 323 | 0.4869 |
0.5732 | 324 | 0.5742 |
0.5750 | 325 | 0.4742 |
0.5767 | 326 | 0.4297 |
0.5785 | 327 | 0.4393 |
0.5803 | 328 | 0.4328 |
0.5820 | 329 | 0.5083 |
0.5838 | 330 | 0.4538 |
0.5856 | 331 | 0.3838 |
0.5874 | 332 | 0.5849 |
0.5891 | 333 | 0.5001 |
0.5909 | 334 | 0.5127 |
0.5927 | 335 | 0.476 |
0.5944 | 336 | 0.4675 |
0.5962 | 337 | 0.3552 |
0.5980 | 338 | 0.6057 |
0.5997 | 339 | 0.32 |
0.6015 | 340 | 0.4914 |
0.6033 | 341 | 0.4509 |
0.6050 | 342 | 0.4392 |
0.6068 | 343 | 0.543 |
0.6086 | 344 | 0.4421 |
0.6103 | 345 | 0.464 |
0.6121 | 346 | 0.6176 |
0.6139 | 347 | 0.3951 |
0.6157 | 348 | 0.4938 |
0.6174 | 349 | 0.4524 |
0.6192 | 350 | 0.4172 |
0.6210 | 351 | 0.5521 |
0.6227 | 352 | 0.3702 |
0.6245 | 353 | 0.3919 |
0.6263 | 354 | 0.5618 |
0.6280 | 355 | 0.4427 |
0.6298 | 356 | 0.4738 |
0.6316 | 357 | 0.6444 |
0.6333 | 358 | 0.5583 |
0.6351 | 359 | 0.4518 |
0.6369 | 360 | 0.4273 |
0.6387 | 361 | 0.5467 |
0.6404 | 362 | 0.5191 |
0.6422 | 363 | 0.4899 |
0.6440 | 364 | 0.4292 |
0.6457 | 365 | 0.514 |
0.6475 | 366 | 0.4397 |
0.6493 | 367 | 0.4591 |
0.6510 | 368 | 0.4554 |
0.6528 | 369 | 0.4312 |
0.6546 | 370 | 0.5847 |
0.6563 | 371 | 0.4237 |
0.6581 | 372 | 0.4889 |
0.6599 | 373 | 0.4684 |
0.6617 | 374 | 0.4797 |
0.6634 | 375 | 0.3599 |
0.6652 | 376 | 0.3451 |
0.6670 | 377 | 0.5332 |
0.6687 | 378 | 0.6504 |
0.6705 | 379 | 0.4116 |
0.6723 | 380 | 0.5084 |
0.6740 | 381 | 0.44 |
0.6758 | 382 | 0.4978 |
0.6776 | 383 | 0.5116 |
0.6793 | 384 | 0.5067 |
0.6811 | 385 | 0.3746 |
0.6829 | 386 | 0.3171 |
0.6847 | 387 | 0.3612 |
0.6864 | 388 | 0.4299 |
0.6882 | 389 | 0.4617 |
0.6900 | 390 | 0.5644 |
0.6917 | 391 | 0.3117 |
0.6935 | 392 | 0.4392 |
0.6953 | 393 | 0.4645 |
0.6970 | 394 | 0.661 |
0.6988 | 395 | 0.4788 |
0.7006 | 396 | 0.3638 |
0.7023 | 397 | 0.4741 |
0.7041 | 398 | 0.4464 |
0.7059 | 399 | 0.5869 |
0.7077 | 400 | 0.434 |
0.7094 | 401 | 0.4735 |
0.7112 | 402 | 0.4239 |
0.7130 | 403 | 0.4081 |
0.7147 | 404 | 0.501 |
0.7165 | 405 | 0.4817 |
0.7183 | 406 | 0.3406 |
0.7200 | 407 | 0.4839 |
0.7218 | 408 | 0.3744 |
0.7236 | 409 | 0.3842 |
0.7253 | 410 | 0.4081 |
0.7271 | 411 | 0.3914 |
0.7289 | 412 | 0.4597 |
0.7307 | 413 | 0.496 |
0.7324 | 414 | 0.2643 |
0.7342 | 415 | 0.5362 |
0.7360 | 416 | 0.2989 |
0.7377 | 417 | 0.3131 |
0.7395 | 418 | 0.4448 |
0.7413 | 419 | 0.5362 |
0.7430 | 420 | 0.3664 |
0.7448 | 421 | 0.5276 |
0.7466 | 422 | 0.3311 |
0.7483 | 423 | 0.3007 |
0.7501 | 424 | 0.4684 |
0.7519 | 425 | 0.4699 |
0.7536 | 426 | 0.3848 |
0.7554 | 427 | 0.3242 |
0.7572 | 428 | 0.3836 |
0.7590 | 429 | 0.4012 |
0.7607 | 430 | 0.5405 |
0.7625 | 431 | 0.4142 |
0.7643 | 432 | 0.3844 |
0.7660 | 433 | 0.2952 |
0.7678 | 434 | 0.5217 |
0.7696 | 435 | 0.486 |
0.7713 | 436 | 0.4244 |
0.7731 | 437 | 0.5105 |
0.7749 | 438 | 0.3892 |
0.7766 | 439 | 0.3699 |
0.7784 | 440 | 0.5893 |
0.7802 | 441 | 0.4628 |
0.7820 | 442 | 0.5032 |
0.7837 | 443 | 0.4953 |
0.7855 | 444 | 0.3133 |
0.7873 | 445 | 0.4575 |
0.7890 | 446 | 0.3201 |
0.7908 | 447 | 0.3212 |
0.7926 | 448 | 0.3756 |
0.7943 | 449 | 0.3449 |
0.7961 | 450 | 0.5293 |
0.7979 | 451 | 0.4334 |
0.7996 | 452 | 0.5617 |
0.8014 | 453 | 0.4368 |
0.8032 | 454 | 0.4581 |
0.8050 | 455 | 0.5356 |
0.8067 | 456 | 0.4242 |
0.8085 | 457 | 0.4365 |
0.8103 | 458 | 0.4116 |
0.8120 | 459 | 0.524 |
0.8138 | 460 | 0.4186 |
0.8156 | 461 | 0.2628 |
0.8173 | 462 | 0.5308 |
0.8191 | 463 | 0.4477 |
0.8209 | 464 | 0.4603 |
0.8226 | 465 | 0.4916 |
0.8244 | 466 | 0.3912 |
0.8262 | 467 | 0.3229 |
0.8280 | 468 | 0.4401 |
0.8297 | 469 | 0.5192 |
0.8315 | 470 | 0.4098 |
0.8333 | 471 | 0.5335 |
0.8350 | 472 | 0.5351 |
0.8368 | 473 | 0.3954 |
0.8386 | 474 | 0.3258 |
0.8403 | 475 | 0.4786 |
0.8421 | 476 | 0.4658 |
0.8439 | 477 | 0.3757 |
0.8456 | 478 | 0.4224 |
0.8474 | 479 | 0.4206 |
0.8492 | 480 | 0.3882 |
0.8510 | 481 | 0.4152 |
0.8527 | 482 | 0.4559 |
0.8545 | 483 | 0.4767 |
0.8563 | 484 | 0.2923 |
0.8580 | 485 | 0.3954 |
0.8598 | 486 | 0.4099 |
0.8616 | 487 | 0.5608 |
0.8633 | 488 | 0.5015 |
0.8651 | 489 | 0.3528 |
0.8669 | 490 | 0.4496 |
0.8686 | 491 | 0.4348 |
0.8704 | 492 | 0.3825 |
0.8722 | 493 | 0.4025 |
0.8739 | 494 | 0.5198 |
0.8757 | 495 | 0.3614 |
0.8775 | 496 | 0.412 |
0.8793 | 497 | 0.5151 |
0.8810 | 498 | 0.5478 |
0.8828 | 499 | 0.387 |
0.8846 | 500 | 0.2864 |
0.8863 | 501 | 0.4617 |
0.8881 | 502 | 0.4682 |
0.8899 | 503 | 0.3962 |
0.8916 | 504 | 0.3429 |
0.8934 | 505 | 0.4239 |
0.8952 | 506 | 0.4094 |
0.8969 | 507 | 0.3582 |
0.8987 | 508 | 0.3192 |
0.9005 | 509 | 0.4337 |
0.9023 | 510 | 0.2739 |
0.9040 | 511 | 0.3407 |
0.9058 | 512 | 0.427 |
0.9076 | 513 | 0.3724 |
0.9093 | 514 | 0.6289 |
0.9111 | 515 | 0.3995 |
0.9129 | 516 | 0.2738 |
0.9146 | 517 | 0.3219 |
0.9164 | 518 | 0.4324 |
0.9182 | 519 | 0.4209 |
0.9199 | 520 | 0.4462 |
0.9217 | 521 | 0.4318 |
0.9235 | 522 | 0.5073 |
0.9253 | 523 | 0.464 |
0.9270 | 524 | 0.4001 |
0.9288 | 525 | 0.3977 |
0.9306 | 526 | 0.5226 |
0.9323 | 527 | 0.3441 |
0.9341 | 528 | 0.5057 |
0.9359 | 529 | 0.5437 |
0.9376 | 530 | 0.4516 |
0.9394 | 531 | 0.347 |
0.9412 | 532 | 0.3971 |
0.9429 | 533 | 0.6176 |
0.9447 | 534 | 0.4616 |
0.9465 | 535 | 0.5525 |
0.9483 | 536 | 0.5172 |
0.9500 | 537 | 0.3715 |
0.9518 | 538 | 0.4075 |
0.9536 | 539 | 0.4067 |
0.9553 | 540 | 0.2413 |
0.9571 | 541 | 0.5025 |
0.9589 | 542 | 0.3473 |
0.9606 | 543 | 0.4071 |
0.9624 | 544 | 0.4812 |
0.9642 | 545 | 0.4871 |
0.9659 | 546 | 0.3069 |
0.9677 | 547 | 0.4824 |
0.9695 | 548 | 0.3028 |
0.9713 | 549 | 0.4561 |
0.9730 | 550 | 0.4598 |
0.9748 | 551 | 0.4712 |
0.9766 | 552 | 0.3909 |
0.9783 | 553 | 0.5058 |
0.9801 | 554 | 0.3624 |
0.9819 | 555 | 0.3914 |
0.9836 | 556 | 0.4798 |
0.9854 | 557 | 0.2983 |
0.9872 | 558 | 0.3628 |
0.9889 | 559 | 0.4062 |
0.9907 | 560 | 0.4956 |
0.9925 | 561 | 0.3459 |
0.9943 | 562 | 0.4157 |
0.9960 | 563 | 0.5642 |
0.9978 | 564 | 0.3373 |
0.9996 | 565 | 0.4446 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/bge-m3
Base model
BAAI/bge-m3