SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/gte-further-filtered-neg5")
# Run inference
sentences = [
'유성체 흐름은 어떻게 분포되어 있나요?',
'유성체 흐름은 대체로 모혜성의 공전궤도를 중심으로 원통형으로 분포되어 있다. 유성체의 밀도는 모혜성의 공전 궤도로 갈수록 높아지며, 지구가 이러한 유성체 흐름을 관통할 때, 중심에 다가갈수록 더 많은 유성체가 지구 대기 속으로 돌입하게 된다. 따라서 한 유성우가 나타날 때는 매일 나타나는 유성의 개수가 증가하다가 감소하는 경향을 띤다. 관측적으로 지수함수적으로 증가하다가 지수함수적으로 감소하는 경향을 보인다. 한 유성우가 나타나는 시기의 유성개수의 변화는, 어떤 시점 formula_1에서 formula_2 와 같이 나타낼 수 있다. 유성의 개수는 formula_3일 때 최대가 되는데, 이것을 극대기라고 한다. 또한 formula_4의 시간 규모는 유성의 개수가 확연하게 변하는 시간 규모에 해당한다. 이른바 지수함수적 시간척도(e-folding time scale)이라고 하는 것이다. 단순히 나타나는 유성의 개수를 세기만 해도 이러한 값들은 측정할 수 있으며, 이로부터 지구 공전 궤도상에 놓여 있는 유성체 흐름의 분포를 자세히 연구할 수 있다.',
'유성체는 대부분 혜성에서 떨어져 나온 부스러기이며, 일부는 소행성에서 떨어져 나온 부스러기도 있다. 유성체는 혜성이 해에 가까이 올 때마다 방출되는데, 해에 접근한 혜성의 속도는 보통 수 십 km/s를 넘는다. 유성체들이 혜성에서 떨어져 나올 때, 방출 속도가 조금씩 다르고 혜성이 또한 자전하므로 유성체들의 속도 성분은 혜성의 속도와 약간씩 차이가 생기게 된다. 그러나 그 양은 혜성의 속도에 비해 아주 작다. 그러나 이 작은 속도 차이 때문에 유성체들은 대체로 혜성의 궤도를 따라 운동을 하되 약간씩 다른 궤도를 돌게 되어, 마침내 혜성에서 나온 유성체들은 혜성의 공전 궤도를 따라 띠를 형성하게 된다. 더군다나 한번 방출된 유성체는 주로 목성과 해의 인력을 받게 되므로 띠는 점점 더 넓어지고 균질하게 된다. 이것을 유성체 흐름(meteoroid stream)이라고 한다. 지구가 유성체 흐름을 휩쓸고 지나갈 때 유성우가 일어난다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64learning_rate
: 7e-05adam_epsilon
: 1e-07warmup_ratio
: 0.05bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 7e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-07max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0026 | 1 | 0.7679 |
0.0052 | 2 | 0.62 |
0.0078 | 3 | 0.5875 |
0.0103 | 4 | 0.5567 |
0.0129 | 5 | 0.6888 |
0.0155 | 6 | 0.6659 |
0.0181 | 7 | 0.6805 |
0.0207 | 8 | 0.5872 |
0.0233 | 9 | 0.7301 |
0.0258 | 10 | 0.4989 |
0.0284 | 11 | 0.6243 |
0.0310 | 12 | 0.6136 |
0.0336 | 13 | 0.6529 |
0.0362 | 14 | 0.5536 |
0.0388 | 15 | 0.7124 |
0.0413 | 16 | 0.5901 |
0.0439 | 17 | 0.5009 |
0.0465 | 18 | 0.6692 |
0.0491 | 19 | 0.5198 |
0.0517 | 20 | 0.4958 |
0.0543 | 21 | 0.5647 |
0.0568 | 22 | 0.5084 |
0.0594 | 23 | 0.6018 |
0.0620 | 24 | 0.5501 |
0.0646 | 25 | 0.6171 |
0.0672 | 26 | 0.4677 |
0.0698 | 27 | 0.4531 |
0.0724 | 28 | 0.5457 |
0.0749 | 29 | 0.4137 |
0.0775 | 30 | 0.502 |
0.0801 | 31 | 0.3585 |
0.0827 | 32 | 0.4246 |
0.0853 | 33 | 0.4401 |
0.0879 | 34 | 0.448 |
0.0904 | 35 | 0.4464 |
0.0930 | 36 | 0.4546 |
0.0956 | 37 | 0.4943 |
0.0982 | 38 | 0.3874 |
0.1008 | 39 | 0.4109 |
0.1034 | 40 | 0.4747 |
0.1059 | 41 | 0.3218 |
0.1085 | 42 | 0.2444 |
0.1111 | 43 | 0.4396 |
0.1137 | 44 | 0.3343 |
0.1163 | 45 | 0.4269 |
0.1189 | 46 | 0.2613 |
0.1214 | 47 | 0.4472 |
0.1240 | 48 | 0.3737 |
0.1266 | 49 | 0.3696 |
0.1292 | 50 | 0.2962 |
0.1318 | 51 | 0.3207 |
0.1344 | 52 | 0.3006 |
0.1370 | 53 | 0.266 |
0.1395 | 54 | 0.4126 |
0.1421 | 55 | 0.2782 |
0.1447 | 56 | 0.3467 |
0.1473 | 57 | 0.3688 |
0.1499 | 58 | 0.3782 |
0.1525 | 59 | 0.2399 |
0.1550 | 60 | 0.3389 |
0.1576 | 61 | 0.2953 |
0.1602 | 62 | 0.262 |
0.1628 | 63 | 0.2786 |
0.1654 | 64 | 0.278 |
0.1680 | 65 | 0.2649 |
0.1705 | 66 | 0.2248 |
0.1731 | 67 | 0.2802 |
0.1757 | 68 | 0.1902 |
0.1783 | 69 | 0.2678 |
0.1809 | 70 | 0.2554 |
0.1835 | 71 | 0.31 |
0.1860 | 72 | 0.2631 |
0.1886 | 73 | 0.2766 |
0.1912 | 74 | 0.3062 |
0.1938 | 75 | 0.2294 |
0.1964 | 76 | 0.1803 |
0.1990 | 77 | 0.345 |
0.2016 | 78 | 0.2374 |
0.2041 | 79 | 0.2737 |
0.2067 | 80 | 0.2879 |
0.2093 | 81 | 0.1561 |
0.2119 | 82 | 0.2342 |
0.2145 | 83 | 0.1912 |
0.2171 | 84 | 0.2001 |
0.2196 | 85 | 0.2577 |
0.2222 | 86 | 0.236 |
0.2248 | 87 | 0.2604 |
0.2274 | 88 | 0.309 |
0.2300 | 89 | 0.2576 |
0.2326 | 90 | 0.254 |
0.2351 | 91 | 0.1699 |
0.2377 | 92 | 0.3595 |
0.2403 | 93 | 0.2516 |
0.2429 | 94 | 0.2495 |
0.2455 | 95 | 0.2182 |
0.2481 | 96 | 0.3665 |
0.2506 | 97 | 0.3084 |
0.2532 | 98 | 0.3122 |
0.2558 | 99 | 0.2174 |
0.2584 | 100 | 0.2536 |
0.2610 | 101 | 0.1953 |
0.2636 | 102 | 0.2979 |
0.2661 | 103 | 0.1005 |
0.2687 | 104 | 0.3461 |
0.2713 | 105 | 0.2068 |
0.2739 | 106 | 0.1989 |
0.2765 | 107 | 0.3092 |
0.2791 | 108 | 0.1499 |
0.2817 | 109 | 0.1323 |
0.2842 | 110 | 0.1536 |
0.2868 | 111 | 0.264 |
0.2894 | 112 | 0.1333 |
0.2920 | 113 | 0.2626 |
0.2946 | 114 | 0.2832 |
0.2972 | 115 | 0.1162 |
0.2997 | 116 | 0.2126 |
0.3023 | 117 | 0.201 |
0.3049 | 118 | 0.2199 |
0.3075 | 119 | 0.2757 |
0.3101 | 120 | 0.2305 |
0.3127 | 121 | 0.2136 |
0.3152 | 122 | 0.1326 |
0.3178 | 123 | 0.1717 |
0.3204 | 124 | 0.2084 |
0.3230 | 125 | 0.2609 |
0.3256 | 126 | 0.3399 |
0.3282 | 127 | 0.2941 |
0.3307 | 128 | 0.4065 |
0.3333 | 129 | 0.1987 |
0.3359 | 130 | 0.1859 |
0.3385 | 131 | 0.1925 |
0.3411 | 132 | 0.2456 |
0.3437 | 133 | 0.2226 |
0.3463 | 134 | 0.1664 |
0.3488 | 135 | 0.1657 |
0.3514 | 136 | 0.2225 |
0.3540 | 137 | 0.2497 |
0.3566 | 138 | 0.297 |
0.3592 | 139 | 0.2724 |
0.3618 | 140 | 0.1881 |
0.3643 | 141 | 0.2542 |
0.3669 | 142 | 0.2917 |
0.3695 | 143 | 0.1989 |
0.3721 | 144 | 0.1373 |
0.3747 | 145 | 0.1697 |
0.3773 | 146 | 0.2558 |
0.3798 | 147 | 0.1616 |
0.3824 | 148 | 0.2284 |
0.3850 | 149 | 0.1968 |
0.3876 | 150 | 0.1204 |
0.3902 | 151 | 0.2593 |
0.3928 | 152 | 0.3826 |
0.3953 | 153 | 0.2153 |
0.3979 | 154 | 0.2661 |
0.4005 | 155 | 0.2417 |
0.4031 | 156 | 0.234 |
0.4057 | 157 | 0.1506 |
0.4083 | 158 | 0.1771 |
0.4109 | 159 | 0.1616 |
0.4134 | 160 | 0.1898 |
0.4160 | 161 | 0.1969 |
0.4186 | 162 | 0.2431 |
0.4212 | 163 | 0.1992 |
0.4238 | 164 | 0.192 |
0.4264 | 165 | 0.2028 |
0.4289 | 166 | 0.2382 |
0.4315 | 167 | 0.2275 |
0.4341 | 168 | 0.1574 |
0.4367 | 169 | 0.2832 |
0.4393 | 170 | 0.1972 |
0.4419 | 171 | 0.2315 |
0.4444 | 172 | 0.2247 |
0.4470 | 173 | 0.2341 |
0.4496 | 174 | 0.2244 |
0.4522 | 175 | 0.1645 |
0.4548 | 176 | 0.2609 |
0.4574 | 177 | 0.1761 |
0.4599 | 178 | 0.4045 |
0.4625 | 179 | 0.1938 |
0.4651 | 180 | 0.3102 |
0.4677 | 181 | 0.1975 |
0.4703 | 182 | 0.2006 |
0.4729 | 183 | 0.1991 |
0.4755 | 184 | 0.164 |
0.4780 | 185 | 0.2669 |
0.4806 | 186 | 0.1775 |
0.4832 | 187 | 0.1271 |
0.4858 | 188 | 0.2955 |
0.4884 | 189 | 0.1761 |
0.4910 | 190 | 0.2153 |
0.4935 | 191 | 0.1312 |
0.4961 | 192 | 0.2594 |
0.4987 | 193 | 0.1715 |
0.5013 | 194 | 0.2089 |
0.5039 | 195 | 0.2036 |
0.5065 | 196 | 0.1404 |
0.5090 | 197 | 0.2259 |
0.5116 | 198 | 0.1722 |
0.5142 | 199 | 0.2353 |
0.5168 | 200 | 0.2091 |
0.5194 | 201 | 0.1738 |
0.5220 | 202 | 0.1803 |
0.5245 | 203 | 0.1872 |
0.5271 | 204 | 0.1481 |
0.5297 | 205 | 0.1634 |
0.5323 | 206 | 0.3416 |
0.5349 | 207 | 0.2206 |
0.5375 | 208 | 0.2167 |
0.5401 | 209 | 0.199 |
0.5426 | 210 | 0.1626 |
0.5452 | 211 | 0.3082 |
0.5478 | 212 | 0.2092 |
0.5504 | 213 | 0.2217 |
0.5530 | 214 | 0.2334 |
0.5556 | 215 | 0.1734 |
0.5581 | 216 | 0.2058 |
0.5607 | 217 | 0.2501 |
0.5633 | 218 | 0.3214 |
0.5659 | 219 | 0.1748 |
0.5685 | 220 | 0.2109 |
0.5711 | 221 | 0.1062 |
0.5736 | 222 | 0.3309 |
0.5762 | 223 | 0.1409 |
0.5788 | 224 | 0.1875 |
0.5814 | 225 | 0.2103 |
0.5840 | 226 | 0.1565 |
0.5866 | 227 | 0.2551 |
0.5891 | 228 | 0.2042 |
0.5917 | 229 | 0.1288 |
0.5943 | 230 | 0.1366 |
0.5969 | 231 | 0.1543 |
0.5995 | 232 | 0.2069 |
0.6021 | 233 | 0.2953 |
0.6047 | 234 | 0.2239 |
0.6072 | 235 | 0.2046 |
0.6098 | 236 | 0.1682 |
0.6124 | 237 | 0.2401 |
0.6150 | 238 | 0.2596 |
0.6176 | 239 | 0.1951 |
0.6202 | 240 | 0.2029 |
0.6227 | 241 | 0.1464 |
0.6253 | 242 | 0.1661 |
0.6279 | 243 | 0.1447 |
0.6305 | 244 | 0.1014 |
0.6331 | 245 | 0.1757 |
0.6357 | 246 | 0.1526 |
0.6382 | 247 | 0.1417 |
0.6408 | 248 | 0.1654 |
0.6434 | 249 | 0.2216 |
0.6460 | 250 | 0.287 |
0.6486 | 251 | 0.3283 |
0.6512 | 252 | 0.1765 |
0.6537 | 253 | 0.184 |
0.6563 | 254 | 0.2038 |
0.6589 | 255 | 0.2501 |
0.6615 | 256 | 0.2285 |
0.6641 | 257 | 0.2239 |
0.6667 | 258 | 0.2949 |
0.6693 | 259 | 0.1532 |
0.6718 | 260 | 0.2584 |
0.6744 | 261 | 0.1513 |
0.6770 | 262 | 0.1326 |
0.6796 | 263 | 0.2777 |
0.6822 | 264 | 0.1235 |
0.6848 | 265 | 0.1843 |
0.6873 | 266 | 0.2934 |
0.6899 | 267 | 0.1732 |
0.6925 | 268 | 0.177 |
0.6951 | 269 | 0.1428 |
0.6977 | 270 | 0.1583 |
0.7003 | 271 | 0.208 |
0.7028 | 272 | 0.1847 |
0.7054 | 273 | 0.1349 |
0.7080 | 274 | 0.1644 |
0.7106 | 275 | 0.214 |
0.7132 | 276 | 0.2338 |
0.7158 | 277 | 0.2421 |
0.7183 | 278 | 0.1836 |
0.7209 | 279 | 0.3185 |
0.7235 | 280 | 0.228 |
0.7261 | 281 | 0.2234 |
0.7287 | 282 | 0.2504 |
0.7313 | 283 | 0.1918 |
0.7339 | 284 | 0.2107 |
0.7364 | 285 | 0.1607 |
0.7390 | 286 | 0.1298 |
0.7416 | 287 | 0.2802 |
0.7442 | 288 | 0.1903 |
0.7468 | 289 | 0.2628 |
0.7494 | 290 | 0.1593 |
0.7519 | 291 | 0.1993 |
0.7545 | 292 | 0.1634 |
0.7571 | 293 | 0.2143 |
0.7597 | 294 | 0.2684 |
0.7623 | 295 | 0.1996 |
0.7649 | 296 | 0.1374 |
0.7674 | 297 | 0.1547 |
0.7700 | 298 | 0.2221 |
0.7726 | 299 | 0.1802 |
0.7752 | 300 | 0.2051 |
0.7778 | 301 | 0.1657 |
0.7804 | 302 | 0.1539 |
0.7829 | 303 | 0.1398 |
0.7855 | 304 | 0.211 |
0.7881 | 305 | 0.2118 |
0.7907 | 306 | 0.2215 |
0.7933 | 307 | 0.1258 |
0.7959 | 308 | 0.1504 |
0.7984 | 309 | 0.2606 |
0.8010 | 310 | 0.1805 |
0.8036 | 311 | 0.2559 |
0.8062 | 312 | 0.1002 |
0.8088 | 313 | 0.2279 |
0.8114 | 314 | 0.1518 |
0.8140 | 315 | 0.191 |
0.8165 | 316 | 0.1891 |
0.8191 | 317 | 0.1497 |
0.8217 | 318 | 0.1704 |
0.8243 | 319 | 0.1839 |
0.8269 | 320 | 0.132 |
0.8295 | 321 | 0.2276 |
0.8320 | 322 | 0.2594 |
0.8346 | 323 | 0.1868 |
0.8372 | 324 | 0.1443 |
0.8398 | 325 | 0.1967 |
0.8424 | 326 | 0.1041 |
0.8450 | 327 | 0.2678 |
0.8475 | 328 | 0.1805 |
0.8501 | 329 | 0.1565 |
0.8527 | 330 | 0.1672 |
0.8553 | 331 | 0.1416 |
0.8579 | 332 | 0.1541 |
0.8605 | 333 | 0.177 |
0.8630 | 334 | 0.098 |
0.8656 | 335 | 0.2422 |
0.8682 | 336 | 0.1849 |
0.8708 | 337 | 0.0895 |
0.8734 | 338 | 0.2132 |
0.8760 | 339 | 0.1613 |
0.8786 | 340 | 0.1912 |
0.8811 | 341 | 0.2053 |
0.8837 | 342 | 0.1021 |
0.8863 | 343 | 0.2787 |
0.8889 | 344 | 0.1864 |
0.8915 | 345 | 0.2768 |
0.8941 | 346 | 0.1357 |
0.8966 | 347 | 0.1293 |
0.8992 | 348 | 0.1857 |
0.9018 | 349 | 0.1266 |
0.9044 | 350 | 0.1166 |
0.9070 | 351 | 0.2127 |
0.9096 | 352 | 0.2263 |
0.9121 | 353 | 0.2055 |
0.9147 | 354 | 0.164 |
0.9173 | 355 | 0.0932 |
0.9199 | 356 | 0.1028 |
0.9225 | 357 | 0.142 |
0.9251 | 358 | 0.1558 |
0.9276 | 359 | 0.149 |
0.9302 | 360 | 0.1967 |
0.9328 | 361 | 0.1272 |
0.9354 | 362 | 0.2464 |
0.9380 | 363 | 0.1894 |
0.9406 | 364 | 0.2198 |
0.9432 | 365 | 0.1901 |
0.9457 | 366 | 0.1614 |
0.9483 | 367 | 0.1307 |
0.9509 | 368 | 0.1794 |
0.9535 | 369 | 0.2301 |
0.9561 | 370 | 0.1924 |
0.9587 | 371 | 0.2617 |
0.9612 | 372 | 0.1623 |
0.9638 | 373 | 0.1443 |
0.9664 | 374 | 0.2275 |
0.9690 | 375 | 0.2367 |
0.9716 | 376 | 0.1893 |
0.9742 | 377 | 0.2257 |
0.9767 | 378 | 0.2445 |
0.9793 | 379 | 0.2034 |
0.9819 | 380 | 0.2347 |
0.9845 | 381 | 0.1305 |
0.9871 | 382 | 0.1996 |
0.9897 | 383 | 0.1434 |
0.9922 | 384 | 0.2763 |
0.9948 | 385 | 0.1748 |
0.9974 | 386 | 0.2023 |
1.0 | 387 | 0.1138 |
1.0026 | 388 | 0.182 |
1.0052 | 389 | 0.2217 |
1.0078 | 390 | 0.1567 |
1.0103 | 391 | 0.1927 |
1.0129 | 392 | 0.2401 |
1.0155 | 393 | 0.21 |
1.0181 | 394 | 0.2667 |
1.0207 | 395 | 0.2306 |
1.0233 | 396 | 0.1865 |
1.0258 | 397 | 0.0838 |
1.0284 | 398 | 0.165 |
1.0310 | 399 | 0.1608 |
1.0336 | 400 | 0.1601 |
1.0362 | 401 | 0.1399 |
1.0388 | 402 | 0.2035 |
1.0413 | 403 | 0.1325 |
1.0439 | 404 | 0.1175 |
1.0465 | 405 | 0.2415 |
1.0491 | 406 | 0.12 |
1.0517 | 407 | 0.1919 |
1.0543 | 408 | 0.1639 |
1.0568 | 409 | 0.0994 |
1.0594 | 410 | 0.1722 |
1.0620 | 411 | 0.2044 |
1.0646 | 412 | 0.2362 |
1.0672 | 413 | 0.2272 |
1.0698 | 414 | 0.2148 |
1.0724 | 415 | 0.2257 |
1.0749 | 416 | 0.1302 |
1.0775 | 417 | 0.1836 |
1.0801 | 418 | 0.0973 |
1.0827 | 419 | 0.1845 |
1.0853 | 420 | 0.2031 |
1.0879 | 421 | 0.1751 |
1.0904 | 422 | 0.1797 |
1.0930 | 423 | 0.1789 |
1.0956 | 424 | 0.1537 |
1.0982 | 425 | 0.1147 |
1.1008 | 426 | 0.1214 |
1.1034 | 427 | 0.2233 |
1.1059 | 428 | 0.1137 |
1.1085 | 429 | 0.0887 |
1.1111 | 430 | 0.1535 |
1.1137 | 431 | 0.1446 |
1.1163 | 432 | 0.1788 |
1.1189 | 433 | 0.1113 |
1.1214 | 434 | 0.1585 |
1.1240 | 435 | 0.1116 |
1.1266 | 436 | 0.1044 |
1.1292 | 437 | 0.1311 |
1.1318 | 438 | 0.1835 |
1.1344 | 439 | 0.1185 |
1.1370 | 440 | 0.1198 |
1.1395 | 441 | 0.1567 |
1.1421 | 442 | 0.1518 |
1.1447 | 443 | 0.1392 |
1.1473 | 444 | 0.1552 |
1.1499 | 445 | 0.1994 |
1.1525 | 446 | 0.1148 |
1.1550 | 447 | 0.1939 |
1.1576 | 448 | 0.1672 |
1.1602 | 449 | 0.0955 |
1.1628 | 450 | 0.1521 |
1.1654 | 451 | 0.1195 |
1.1680 | 452 | 0.1026 |
1.1705 | 453 | 0.0847 |
1.1731 | 454 | 0.1475 |
1.1757 | 455 | 0.0908 |
1.1783 | 456 | 0.154 |
1.1809 | 457 | 0.1033 |
1.1835 | 458 | 0.1876 |
1.1860 | 459 | 0.1087 |
1.1886 | 460 | 0.1425 |
1.1912 | 461 | 0.2407 |
1.1938 | 462 | 0.1317 |
1.1964 | 463 | 0.0819 |
1.1990 | 464 | 0.1737 |
1.2016 | 465 | 0.1224 |
1.2041 | 466 | 0.1347 |
1.2067 | 467 | 0.1011 |
1.2093 | 468 | 0.071 |
1.2119 | 469 | 0.1006 |
1.2145 | 470 | 0.1182 |
1.2171 | 471 | 0.0642 |
1.2196 | 472 | 0.1359 |
1.2222 | 473 | 0.1492 |
1.2248 | 474 | 0.1573 |
1.2274 | 475 | 0.1393 |
1.2300 | 476 | 0.1126 |
1.2326 | 477 | 0.1377 |
1.2351 | 478 | 0.1398 |
1.2377 | 479 | 0.1944 |
1.2403 | 480 | 0.1248 |
1.2429 | 481 | 0.1594 |
1.2455 | 482 | 0.1209 |
1.2481 | 483 | 0.2041 |
1.2506 | 484 | 0.2128 |
1.2532 | 485 | 0.1167 |
1.2558 | 486 | 0.114 |
1.2584 | 487 | 0.1788 |
1.2610 | 488 | 0.0821 |
1.2636 | 489 | 0.137 |
1.2661 | 490 | 0.0511 |
1.2687 | 491 | 0.2547 |
1.2713 | 492 | 0.1569 |
1.2739 | 493 | 0.113 |
1.2765 | 494 | 0.1901 |
1.2791 | 495 | 0.0671 |
1.2817 | 496 | 0.086 |
1.2842 | 497 | 0.0904 |
1.2868 | 498 | 0.1443 |
1.2894 | 499 | 0.1084 |
1.2920 | 500 | 0.172 |
1.2946 | 501 | 0.1291 |
1.2972 | 502 | 0.0481 |
1.2997 | 503 | 0.1722 |
1.3023 | 504 | 0.1525 |
1.3049 | 505 | 0.1231 |
1.3075 | 506 | 0.1528 |
1.3101 | 507 | 0.1604 |
1.3127 | 508 | 0.1446 |
1.3152 | 509 | 0.0584 |
1.3178 | 510 | 0.0731 |
1.3204 | 511 | 0.128 |
1.3230 | 512 | 0.1482 |
1.3256 | 513 | 0.227 |
1.3282 | 514 | 0.1262 |
1.3307 | 515 | 0.3067 |
1.3333 | 516 | 0.1197 |
1.3359 | 517 | 0.1136 |
1.3385 | 518 | 0.1098 |
1.3411 | 519 | 0.173 |
1.3437 | 520 | 0.0962 |
1.3463 | 521 | 0.0972 |
1.3488 | 522 | 0.0965 |
1.3514 | 523 | 0.1618 |
1.3540 | 524 | 0.15 |
1.3566 | 525 | 0.2188 |
1.3592 | 526 | 0.186 |
1.3618 | 527 | 0.1546 |
1.3643 | 528 | 0.1107 |
1.3669 | 529 | 0.1336 |
1.3695 | 530 | 0.1382 |
1.3721 | 531 | 0.1081 |
1.3747 | 532 | 0.0808 |
1.3773 | 533 | 0.1351 |
1.3798 | 534 | 0.1112 |
1.3824 | 535 | 0.104 |
1.3850 | 536 | 0.0949 |
1.3876 | 537 | 0.0972 |
1.3902 | 538 | 0.1416 |
1.3928 | 539 | 0.2878 |
1.3953 | 540 | 0.1246 |
1.3979 | 541 | 0.1605 |
1.4005 | 542 | 0.2012 |
1.4031 | 543 | 0.1472 |
1.4057 | 544 | 0.0939 |
1.4083 | 545 | 0.1146 |
1.4109 | 546 | 0.0897 |
1.4134 | 547 | 0.1545 |
1.4160 | 548 | 0.1224 |
1.4186 | 549 | 0.134 |
1.4212 | 550 | 0.1823 |
1.4238 | 551 | 0.1636 |
1.4264 | 552 | 0.1333 |
1.4289 | 553 | 0.1029 |
1.4315 | 554 | 0.1856 |
1.4341 | 555 | 0.1147 |
1.4367 | 556 | 0.1698 |
1.4393 | 557 | 0.1202 |
1.4419 | 558 | 0.1402 |
1.4444 | 559 | 0.1612 |
1.4470 | 560 | 0.1623 |
1.4496 | 561 | 0.1503 |
1.4522 | 562 | 0.1027 |
1.4548 | 563 | 0.1812 |
1.4574 | 564 | 0.0991 |
1.4599 | 565 | 0.2166 |
1.4625 | 566 | 0.1367 |
1.4651 | 567 | 0.215 |
1.4677 | 568 | 0.1303 |
1.4703 | 569 | 0.1031 |
1.4729 | 570 | 0.1407 |
1.4755 | 571 | 0.0845 |
1.4780 | 572 | 0.1248 |
1.4806 | 573 | 0.106 |
1.4832 | 574 | 0.074 |
1.4858 | 575 | 0.1855 |
1.4884 | 576 | 0.0906 |
1.4910 | 577 | 0.1173 |
1.4935 | 578 | 0.0889 |
1.4961 | 579 | 0.1688 |
1.4987 | 580 | 0.1116 |
1.5013 | 581 | 0.1711 |
1.5039 | 582 | 0.1506 |
1.5065 | 583 | 0.0962 |
1.5090 | 584 | 0.1381 |
1.5116 | 585 | 0.1132 |
1.5142 | 586 | 0.1617 |
1.5168 | 587 | 0.1476 |
1.5194 | 588 | 0.0938 |
1.5220 | 589 | 0.1264 |
1.5245 | 590 | 0.1138 |
1.5271 | 591 | 0.0822 |
1.5297 | 592 | 0.091 |
1.5323 | 593 | 0.2277 |
1.5349 | 594 | 0.1301 |
1.5375 | 595 | 0.1917 |
1.5401 | 596 | 0.1524 |
1.5426 | 597 | 0.1021 |
1.5452 | 598 | 0.2273 |
1.5478 | 599 | 0.1036 |
1.5504 | 600 | 0.167 |
1.5530 | 601 | 0.1483 |
1.5556 | 602 | 0.1117 |
1.5581 | 603 | 0.1354 |
1.5607 | 604 | 0.1454 |
1.5633 | 605 | 0.3006 |
1.5659 | 606 | 0.1378 |
1.5685 | 607 | 0.18 |
1.5711 | 608 | 0.083 |
1.5736 | 609 | 0.2083 |
1.5762 | 610 | 0.0824 |
1.5788 | 611 | 0.1476 |
1.5814 | 612 | 0.1499 |
1.5840 | 613 | 0.1092 |
1.5866 | 614 | 0.2291 |
1.5891 | 615 | 0.1121 |
1.5917 | 616 | 0.0798 |
1.5943 | 617 | 0.0843 |
1.5969 | 618 | 0.1143 |
1.5995 | 619 | 0.1062 |
1.6021 | 620 | 0.209 |
1.6047 | 621 | 0.1556 |
1.6072 | 622 | 0.1828 |
1.6098 | 623 | 0.1107 |
1.6124 | 624 | 0.1827 |
1.6150 | 625 | 0.1885 |
1.6176 | 626 | 0.1606 |
1.6202 | 627 | 0.1561 |
1.6227 | 628 | 0.1256 |
1.6253 | 629 | 0.077 |
1.6279 | 630 | 0.0826 |
1.6305 | 631 | 0.118 |
1.6331 | 632 | 0.0998 |
1.6357 | 633 | 0.0782 |
1.6382 | 634 | 0.1448 |
1.6408 | 635 | 0.1195 |
1.6434 | 636 | 0.1879 |
1.6460 | 637 | 0.1733 |
1.6486 | 638 | 0.2013 |
1.6512 | 639 | 0.1088 |
1.6537 | 640 | 0.1584 |
1.6563 | 641 | 0.1345 |
1.6589 | 642 | 0.2369 |
1.6615 | 643 | 0.1484 |
1.6641 | 644 | 0.1784 |
1.6667 | 645 | 0.2001 |
1.6693 | 646 | 0.1264 |
1.6718 | 647 | 0.1867 |
1.6744 | 648 | 0.0808 |
1.6770 | 649 | 0.0975 |
1.6796 | 650 | 0.156 |
1.6822 | 651 | 0.076 |
1.6848 | 652 | 0.1397 |
1.6873 | 653 | 0.1591 |
1.6899 | 654 | 0.1405 |
1.6925 | 655 | 0.0888 |
1.6951 | 656 | 0.1066 |
1.6977 | 657 | 0.0932 |
1.7003 | 658 | 0.1541 |
1.7028 | 659 | 0.1614 |
1.7054 | 660 | 0.0826 |
1.7080 | 661 | 0.1334 |
1.7106 | 662 | 0.154 |
1.7132 | 663 | 0.1452 |
1.7158 | 664 | 0.1708 |
1.7183 | 665 | 0.1472 |
1.7209 | 666 | 0.2017 |
1.7235 | 667 | 0.1821 |
1.7261 | 668 | 0.169 |
1.7287 | 669 | 0.1658 |
1.7313 | 670 | 0.1081 |
1.7339 | 671 | 0.1613 |
1.7364 | 672 | 0.0995 |
1.7390 | 673 | 0.127 |
1.7416 | 674 | 0.1893 |
1.7442 | 675 | 0.1249 |
1.7468 | 676 | 0.1756 |
1.7494 | 677 | 0.1034 |
1.7519 | 678 | 0.1402 |
1.7545 | 679 | 0.099 |
1.7571 | 680 | 0.1466 |
1.7597 | 681 | 0.1805 |
1.7623 | 682 | 0.0954 |
1.7649 | 683 | 0.102 |
1.7674 | 684 | 0.0911 |
1.7700 | 685 | 0.1214 |
1.7726 | 686 | 0.1039 |
1.7752 | 687 | 0.1147 |
1.7778 | 688 | 0.0865 |
1.7804 | 689 | 0.1019 |
1.7829 | 690 | 0.0771 |
1.7855 | 691 | 0.1347 |
1.7881 | 692 | 0.1696 |
1.7907 | 693 | 0.1564 |
1.7933 | 694 | 0.1041 |
1.7959 | 695 | 0.1377 |
1.7984 | 696 | 0.2311 |
1.8010 | 697 | 0.1562 |
1.8036 | 698 | 0.1466 |
1.8062 | 699 | 0.0636 |
1.8088 | 700 | 0.1792 |
1.8114 | 701 | 0.0998 |
1.8140 | 702 | 0.1436 |
1.8165 | 703 | 0.134 |
1.8191 | 704 | 0.1326 |
1.8217 | 705 | 0.1714 |
1.8243 | 706 | 0.123 |
1.8269 | 707 | 0.119 |
1.8295 | 708 | 0.1803 |
1.8320 | 709 | 0.1752 |
1.8346 | 710 | 0.1116 |
1.8372 | 711 | 0.1199 |
1.8398 | 712 | 0.1444 |
1.8424 | 713 | 0.0871 |
1.8450 | 714 | 0.2385 |
1.8475 | 715 | 0.1565 |
1.8501 | 716 | 0.1185 |
1.8527 | 717 | 0.101 |
1.8553 | 718 | 0.1285 |
1.8579 | 719 | 0.1247 |
1.8605 | 720 | 0.1326 |
1.8630 | 721 | 0.1049 |
1.8656 | 722 | 0.1918 |
1.8682 | 723 | 0.1417 |
1.8708 | 724 | 0.097 |
1.8734 | 725 | 0.1953 |
1.8760 | 726 | 0.1396 |
1.8786 | 727 | 0.1773 |
1.8811 | 728 | 0.1404 |
1.8837 | 729 | 0.1049 |
1.8863 | 730 | 0.2029 |
1.8889 | 731 | 0.1597 |
1.8915 | 732 | 0.1989 |
1.8941 | 733 | 0.0921 |
1.8966 | 734 | 0.0777 |
1.8992 | 735 | 0.1241 |
1.9018 | 736 | 0.1116 |
1.9044 | 737 | 0.1017 |
1.9070 | 738 | 0.1241 |
1.9096 | 739 | 0.1601 |
1.9121 | 740 | 0.1472 |
1.9147 | 741 | 0.1218 |
1.9173 | 742 | 0.0903 |
1.9199 | 743 | 0.0777 |
1.9225 | 744 | 0.1115 |
1.9251 | 745 | 0.109 |
1.9276 | 746 | 0.1291 |
1.9302 | 747 | 0.1893 |
1.9328 | 748 | 0.1234 |
1.9354 | 749 | 0.25 |
1.9380 | 750 | 0.1475 |
1.9406 | 751 | 0.1574 |
1.9432 | 752 | 0.2231 |
1.9457 | 753 | 0.1341 |
1.9483 | 754 | 0.0776 |
1.9509 | 755 | 0.1712 |
1.9535 | 756 | 0.1629 |
1.9561 | 757 | 0.1751 |
1.9587 | 758 | 0.2061 |
1.9612 | 759 | 0.1329 |
1.9638 | 760 | 0.1284 |
1.9664 | 761 | 0.1937 |
1.9690 | 762 | 0.1458 |
1.9716 | 763 | 0.1317 |
1.9742 | 764 | 0.1141 |
1.9767 | 765 | 0.2299 |
1.9793 | 766 | 0.1455 |
1.9819 | 767 | 0.1535 |
1.9845 | 768 | 0.1123 |
1.9871 | 769 | 0.1963 |
1.9897 | 770 | 0.0977 |
1.9922 | 771 | 0.1847 |
1.9948 | 772 | 0.1192 |
1.9974 | 773 | 0.1481 |
2.0 | 774 | 0.0941 |
2.0026 | 775 | 0.1925 |
2.0052 | 776 | 0.2023 |
2.0078 | 777 | 0.0936 |
2.0103 | 778 | 0.161 |
2.0129 | 779 | 0.1958 |
2.0155 | 780 | 0.1642 |
2.0181 | 781 | 0.2644 |
2.0207 | 782 | 0.1858 |
2.0233 | 783 | 0.149 |
2.0258 | 784 | 0.0721 |
2.0284 | 785 | 0.1602 |
2.0310 | 786 | 0.083 |
2.0336 | 787 | 0.1192 |
2.0362 | 788 | 0.1133 |
2.0388 | 789 | 0.161 |
2.0413 | 790 | 0.1 |
2.0439 | 791 | 0.1142 |
2.0465 | 792 | 0.1761 |
2.0491 | 793 | 0.0686 |
2.0517 | 794 | 0.1064 |
2.0543 | 795 | 0.1621 |
2.0568 | 796 | 0.0788 |
2.0594 | 797 | 0.1472 |
2.0620 | 798 | 0.1717 |
2.0646 | 799 | 0.1991 |
2.0672 | 800 | 0.129 |
2.0698 | 801 | 0.177 |
2.0724 | 802 | 0.1344 |
2.0749 | 803 | 0.1433 |
2.0775 | 804 | 0.1261 |
2.0801 | 805 | 0.0999 |
2.0827 | 806 | 0.1114 |
2.0853 | 807 | 0.1265 |
2.0879 | 808 | 0.1632 |
2.0904 | 809 | 0.1247 |
2.0930 | 810 | 0.1392 |
2.0956 | 811 | 0.1489 |
2.0982 | 812 | 0.1131 |
2.1008 | 813 | 0.1147 |
2.1034 | 814 | 0.1957 |
2.1059 | 815 | 0.0873 |
2.1085 | 816 | 0.0996 |
2.1111 | 817 | 0.1317 |
2.1137 | 818 | 0.087 |
2.1163 | 819 | 0.1294 |
2.1189 | 820 | 0.0748 |
2.1214 | 821 | 0.1382 |
2.1240 | 822 | 0.0727 |
2.1266 | 823 | 0.0985 |
2.1292 | 824 | 0.1322 |
2.1318 | 825 | 0.1439 |
2.1344 | 826 | 0.1046 |
2.1370 | 827 | 0.0978 |
2.1395 | 828 | 0.1453 |
2.1421 | 829 | 0.1113 |
2.1447 | 830 | 0.1313 |
2.1473 | 831 | 0.1431 |
2.1499 | 832 | 0.2131 |
2.1525 | 833 | 0.1018 |
2.1550 | 834 | 0.0969 |
2.1576 | 835 | 0.107 |
2.1602 | 836 | 0.0698 |
2.1628 | 837 | 0.1345 |
2.1654 | 838 | 0.1115 |
2.1680 | 839 | 0.1115 |
2.1705 | 840 | 0.0778 |
2.1731 | 841 | 0.1101 |
2.1757 | 842 | 0.0845 |
2.1783 | 843 | 0.169 |
2.1809 | 844 | 0.0887 |
2.1835 | 845 | 0.1837 |
2.1860 | 846 | 0.0934 |
2.1886 | 847 | 0.1031 |
2.1912 | 848 | 0.2021 |
2.1938 | 849 | 0.1224 |
2.1964 | 850 | 0.0763 |
2.1990 | 851 | 0.1701 |
2.2016 | 852 | 0.1097 |
2.2041 | 853 | 0.1054 |
2.2067 | 854 | 0.1055 |
2.2093 | 855 | 0.0642 |
2.2119 | 856 | 0.0964 |
2.2145 | 857 | 0.0907 |
2.2171 | 858 | 0.0438 |
2.2196 | 859 | 0.1099 |
2.2222 | 860 | 0.0662 |
2.2248 | 861 | 0.1545 |
2.2274 | 862 | 0.1122 |
2.2300 | 863 | 0.0936 |
2.2326 | 864 | 0.1189 |
2.2351 | 865 | 0.1155 |
2.2377 | 866 | 0.2454 |
2.2403 | 867 | 0.0919 |
2.2429 | 868 | 0.1388 |
2.2455 | 869 | 0.1175 |
2.2481 | 870 | 0.1887 |
2.2506 | 871 | 0.156 |
2.2532 | 872 | 0.1174 |
2.2558 | 873 | 0.0975 |
2.2584 | 874 | 0.125 |
2.2610 | 875 | 0.0622 |
2.2636 | 876 | 0.1722 |
2.2661 | 877 | 0.0392 |
2.2687 | 878 | 0.2179 |
2.2713 | 879 | 0.1214 |
2.2739 | 880 | 0.0739 |
2.2765 | 881 | 0.1898 |
2.2791 | 882 | 0.0633 |
2.2817 | 883 | 0.0678 |
2.2842 | 884 | 0.0751 |
2.2868 | 885 | 0.1197 |
2.2894 | 886 | 0.0962 |
2.2920 | 887 | 0.1359 |
2.2946 | 888 | 0.0795 |
2.2972 | 889 | 0.0543 |
2.2997 | 890 | 0.1326 |
2.3023 | 891 | 0.1348 |
2.3049 | 892 | 0.1181 |
2.3075 | 893 | 0.134 |
2.3101 | 894 | 0.0984 |
2.3127 | 895 | 0.1143 |
2.3152 | 896 | 0.0519 |
2.3178 | 897 | 0.0784 |
2.3204 | 898 | 0.1062 |
2.3230 | 899 | 0.1416 |
2.3256 | 900 | 0.1379 |
2.3282 | 901 | 0.1259 |
2.3307 | 902 | 0.2359 |
2.3333 | 903 | 0.0901 |
2.3359 | 904 | 0.1005 |
2.3385 | 905 | 0.1075 |
2.3411 | 906 | 0.1281 |
2.3437 | 907 | 0.1083 |
2.3463 | 908 | 0.0609 |
2.3488 | 909 | 0.0793 |
2.3514 | 910 | 0.1184 |
2.3540 | 911 | 0.1328 |
2.3566 | 912 | 0.1867 |
2.3592 | 913 | 0.1976 |
2.3618 | 914 | 0.1121 |
2.3643 | 915 | 0.1059 |
2.3669 | 916 | 0.1417 |
2.3695 | 917 | 0.1515 |
2.3721 | 918 | 0.1093 |
2.3747 | 919 | 0.0735 |
2.3773 | 920 | 0.1362 |
2.3798 | 921 | 0.1134 |
2.3824 | 922 | 0.1356 |
2.3850 | 923 | 0.075 |
2.3876 | 924 | 0.0728 |
2.3902 | 925 | 0.1262 |
2.3928 | 926 | 0.2486 |
2.3953 | 927 | 0.1384 |
2.3979 | 928 | 0.1543 |
2.4005 | 929 | 0.1447 |
2.4031 | 930 | 0.1118 |
2.4057 | 931 | 0.0785 |
2.4083 | 932 | 0.1008 |
2.4109 | 933 | 0.0567 |
2.4134 | 934 | 0.1422 |
2.4160 | 935 | 0.1267 |
2.4186 | 936 | 0.1239 |
2.4212 | 937 | 0.1792 |
2.4238 | 938 | 0.1396 |
2.4264 | 939 | 0.1063 |
2.4289 | 940 | 0.0991 |
2.4315 | 941 | 0.12 |
2.4341 | 942 | 0.0853 |
2.4367 | 943 | 0.1595 |
2.4393 | 944 | 0.0952 |
2.4419 | 945 | 0.1225 |
2.4444 | 946 | 0.1013 |
2.4470 | 947 | 0.1431 |
2.4496 | 948 | 0.1648 |
2.4522 | 949 | 0.1057 |
2.4548 | 950 | 0.2071 |
2.4574 | 951 | 0.0992 |
2.4599 | 952 | 0.2224 |
2.4625 | 953 | 0.12 |
2.4651 | 954 | 0.168 |
2.4677 | 955 | 0.0934 |
2.4703 | 956 | 0.1027 |
2.4729 | 957 | 0.1511 |
2.4755 | 958 | 0.055 |
2.4780 | 959 | 0.1711 |
2.4806 | 960 | 0.1041 |
2.4832 | 961 | 0.0517 |
2.4858 | 962 | 0.1721 |
2.4884 | 963 | 0.0752 |
2.4910 | 964 | 0.1414 |
2.4935 | 965 | 0.0806 |
2.4961 | 966 | 0.1239 |
2.4987 | 967 | 0.1261 |
2.5013 | 968 | 0.1695 |
2.5039 | 969 | 0.115 |
2.5065 | 970 | 0.1079 |
2.5090 | 971 | 0.1031 |
2.5116 | 972 | 0.0872 |
2.5142 | 973 | 0.1775 |
2.5168 | 974 | 0.1164 |
2.5194 | 975 | 0.0926 |
2.5220 | 976 | 0.1239 |
2.5245 | 977 | 0.1012 |
2.5271 | 978 | 0.07 |
2.5297 | 979 | 0.1009 |
2.5323 | 980 | 0.2477 |
2.5349 | 981 | 0.1654 |
2.5375 | 982 | 0.1597 |
2.5401 | 983 | 0.166 |
2.5426 | 984 | 0.1027 |
2.5452 | 985 | 0.214 |
2.5478 | 986 | 0.0963 |
2.5504 | 987 | 0.1128 |
2.5530 | 988 | 0.1474 |
2.5556 | 989 | 0.1065 |
2.5581 | 990 | 0.1209 |
2.5607 | 991 | 0.132 |
2.5633 | 992 | 0.274 |
2.5659 | 993 | 0.0845 |
2.5685 | 994 | 0.1455 |
2.5711 | 995 | 0.0707 |
2.5736 | 996 | 0.2082 |
2.5762 | 997 | 0.0803 |
2.5788 | 998 | 0.1153 |
2.5814 | 999 | 0.097 |
2.5840 | 1000 | 0.0979 |
2.5866 | 1001 | 0.207 |
2.5891 | 1002 | 0.1084 |
2.5917 | 1003 | 0.0725 |
2.5943 | 1004 | 0.0945 |
2.5969 | 1005 | 0.1056 |
2.5995 | 1006 | 0.1284 |
2.6021 | 1007 | 0.1771 |
2.6047 | 1008 | 0.1154 |
2.6072 | 1009 | 0.1597 |
2.6098 | 1010 | 0.1019 |
2.6124 | 1011 | 0.1 |
2.6150 | 1012 | 0.1723 |
2.6176 | 1013 | 0.1491 |
2.6202 | 1014 | 0.1447 |
2.6227 | 1015 | 0.1142 |
2.6253 | 1016 | 0.0901 |
2.6279 | 1017 | 0.0805 |
2.6305 | 1018 | 0.0687 |
2.6331 | 1019 | 0.1021 |
2.6357 | 1020 | 0.1089 |
2.6382 | 1021 | 0.101 |
2.6408 | 1022 | 0.1154 |
2.6434 | 1023 | 0.149 |
2.6460 | 1024 | 0.1731 |
2.6486 | 1025 | 0.1902 |
2.6512 | 1026 | 0.106 |
2.6537 | 1027 | 0.1315 |
2.6563 | 1028 | 0.1344 |
2.6589 | 1029 | 0.2004 |
2.6615 | 1030 | 0.1629 |
2.6641 | 1031 | 0.1365 |
2.6667 | 1032 | 0.1638 |
2.6693 | 1033 | 0.1301 |
2.6718 | 1034 | 0.1822 |
2.6744 | 1035 | 0.0965 |
2.6770 | 1036 | 0.082 |
2.6796 | 1037 | 0.1501 |
2.6822 | 1038 | 0.0645 |
2.6848 | 1039 | 0.1261 |
2.6873 | 1040 | 0.2367 |
2.6899 | 1041 | 0.1378 |
2.6925 | 1042 | 0.1001 |
2.6951 | 1043 | 0.0973 |
2.6977 | 1044 | 0.1161 |
2.7003 | 1045 | 0.1148 |
2.7028 | 1046 | 0.1242 |
2.7054 | 1047 | 0.0867 |
2.7080 | 1048 | 0.1116 |
2.7106 | 1049 | 0.1502 |
2.7132 | 1050 | 0.1594 |
2.7158 | 1051 | 0.1459 |
2.7183 | 1052 | 0.1533 |
2.7209 | 1053 | 0.1791 |
2.7235 | 1054 | 0.1745 |
2.7261 | 1055 | 0.1128 |
2.7287 | 1056 | 0.1859 |
2.7313 | 1057 | 0.0938 |
2.7339 | 1058 | 0.1103 |
2.7364 | 1059 | 0.0907 |
2.7390 | 1060 | 0.0891 |
2.7416 | 1061 | 0.1897 |
2.7442 | 1062 | 0.1048 |
2.7468 | 1063 | 0.1777 |
2.7494 | 1064 | 0.1196 |
2.7519 | 1065 | 0.1477 |
2.7545 | 1066 | 0.113 |
2.7571 | 1067 | 0.1565 |
2.7597 | 1068 | 0.2063 |
2.7623 | 1069 | 0.0883 |
2.7649 | 1070 | 0.0888 |
2.7674 | 1071 | 0.0985 |
2.7700 | 1072 | 0.1242 |
2.7726 | 1073 | 0.1177 |
2.7752 | 1074 | 0.1053 |
2.7778 | 1075 | 0.0638 |
2.7804 | 1076 | 0.1103 |
2.7829 | 1077 | 0.0837 |
2.7855 | 1078 | 0.1347 |
2.7881 | 1079 | 0.1333 |
2.7907 | 1080 | 0.1697 |
2.7933 | 1081 | 0.1057 |
2.7959 | 1082 | 0.1102 |
2.7984 | 1083 | 0.1632 |
2.8010 | 1084 | 0.1295 |
2.8036 | 1085 | 0.1349 |
2.8062 | 1086 | 0.0729 |
2.8088 | 1087 | 0.1628 |
2.8114 | 1088 | 0.0935 |
2.8140 | 1089 | 0.1359 |
2.8165 | 1090 | 0.1262 |
2.8191 | 1091 | 0.1474 |
2.8217 | 1092 | 0.1248 |
2.8243 | 1093 | 0.1124 |
2.8269 | 1094 | 0.1262 |
2.8295 | 1095 | 0.2138 |
2.8320 | 1096 | 0.2028 |
2.8346 | 1097 | 0.122 |
2.8372 | 1098 | 0.1275 |
2.8398 | 1099 | 0.1176 |
2.8424 | 1100 | 0.0579 |
2.8450 | 1101 | 0.1725 |
2.8475 | 1102 | 0.1311 |
2.8501 | 1103 | 0.1246 |
2.8527 | 1104 | 0.1132 |
2.8553 | 1105 | 0.0998 |
2.8579 | 1106 | 0.1069 |
2.8605 | 1107 | 0.09 |
2.8630 | 1108 | 0.0925 |
2.8656 | 1109 | 0.1689 |
2.8682 | 1110 | 0.134 |
2.8708 | 1111 | 0.1002 |
2.8734 | 1112 | 0.1838 |
2.8760 | 1113 | 0.1526 |
2.8786 | 1114 | 0.1513 |
2.8811 | 1115 | 0.1702 |
2.8837 | 1116 | 0.101 |
2.8863 | 1117 | 0.1615 |
2.8889 | 1118 | 0.0936 |
2.8915 | 1119 | 0.1835 |
2.8941 | 1120 | 0.1015 |
2.8966 | 1121 | 0.0717 |
2.8992 | 1122 | 0.1218 |
2.9018 | 1123 | 0.071 |
2.9044 | 1124 | 0.0987 |
2.9070 | 1125 | 0.1109 |
2.9096 | 1126 | 0.12 |
2.9121 | 1127 | 0.1667 |
2.9147 | 1128 | 0.1171 |
2.9173 | 1129 | 0.095 |
2.9199 | 1130 | 0.0825 |
2.9225 | 1131 | 0.0654 |
2.9251 | 1132 | 0.1256 |
2.9276 | 1133 | 0.1156 |
2.9302 | 1134 | 0.171 |
2.9328 | 1135 | 0.0958 |
2.9354 | 1136 | 0.2148 |
2.9380 | 1137 | 0.1514 |
2.9406 | 1138 | 0.1491 |
2.9432 | 1139 | 0.1478 |
2.9457 | 1140 | 0.0833 |
2.9483 | 1141 | 0.0822 |
2.9509 | 1142 | 0.1612 |
2.9535 | 1143 | 0.2068 |
2.9561 | 1144 | 0.155 |
2.9587 | 1145 | 0.1877 |
2.9612 | 1146 | 0.1337 |
2.9638 | 1147 | 0.093 |
2.9664 | 1148 | 0.1539 |
2.9690 | 1149 | 0.1659 |
2.9716 | 1150 | 0.0969 |
2.9742 | 1151 | 0.1403 |
2.9767 | 1152 | 0.2031 |
2.9793 | 1153 | 0.1759 |
2.9819 | 1154 | 0.1254 |
2.9845 | 1155 | 0.1242 |
2.9871 | 1156 | 0.1754 |
2.9897 | 1157 | 0.0967 |
2.9922 | 1158 | 0.1602 |
2.9948 | 1159 | 0.1087 |
2.9974 | 1160 | 0.1776 |
3.0 | 1161 | 0.0722 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/gte-further-filtered-neg5
Base model
Alibaba-NLP/gte-multilingual-base