metadata
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4532
- loss:CoSENTLoss
widget:
- source_sentence: портативный проектор umiio a 008
sentences:
- портативный проектор philips a 008
- logitech c270i iptv
- детский электромобиль sundays land rover jj012
- source_sentence: запчасти для швейных машин bernette
sentences:
- мфу samsung m428fdw
- запасные части для швейной машины bernette
- steelseries apex pro mini wireless
- source_sentence: сушильная машина maunfeld mfdm1410wh06
sentences:
- кухонные уголки
- сушильная машина simens mfdm1410wh06
- сетевой удлинитель евро eu-4 multi-protection 4usb qy-923 2500w
- source_sentence: монитор acer k242hql
sentences:
- multiflashlight armytek zippy green
- роутер mi router 4c r4cm dvb4231gl
- монитор acer k224hql
- source_sentence: набор моя первая кухня
sentences:
- кухонные наборы
- ea sports fc 23 ps4
- da vinci белая
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9701810342203735
name: Pearson Cosine
- type: spearman_cosine
value: 0.9168792089469636
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9695654298959763
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9165761310923896
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9696385323216731
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9166348972420479
name: Spearman Euclidean
- type: pearson_dot
value: 0.9631206697635591
name: Pearson Dot
- type: spearman_dot
value: 0.9173046326579305
name: Spearman Dot
- type: pearson_max
value: 0.9701810342203735
name: Pearson Max
- type: spearman_max
value: 0.9173046326579305
name: Spearman Max
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl101/test_bge_2_10ep")
# Run inference
sentences = [
'набор моя первая кухня',
'кухонные наборы',
'ea sports fc 23 ps4',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9702 |
spearman_cosine | 0.9169 |
pearson_manhattan | 0.9696 |
spearman_manhattan | 0.9166 |
pearson_euclidean | 0.9696 |
spearman_euclidean | 0.9166 |
pearson_dot | 0.9631 |
spearman_dot | 0.9173 |
pearson_max | 0.9702 |
spearman_max | 0.9173 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,532 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 14.45 tokens
- max: 48 tokens
- min: 3 tokens
- mean: 13.09 tokens
- max: 51 tokens
- min: 0.0
- mean: 0.6
- max: 1.0
- Samples:
sentence1 sentence2 score батут evo jump internal 12ft
батут evo jump internal 12ft
1.0
наручные часы orient casual
наручные часы orient
1.0
электрический духовой шкаф weissgauff eov 19 mw
электрический духовой шкаф weissgauff eov 19 mx
0.4
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 504 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 14.93 tokens
- max: 48 tokens
- min: 4 tokens
- mean: 13.1 tokens
- max: 40 tokens
- min: 0.0
- mean: 0.59
- max: 1.0
- Samples:
sentence1 sentence2 score потолочный светильник yeelight smart led ceiling light c2001s500
yeelight smart led ceiling light c2001s500
1.0
канцелярские принадлежности
канцелярские принадлежности разные
0.4
usb-магнитола acv avs-1718g
автомагнитола acv avs-1718g
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1save_only_model
: Trueseed
: 33fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Truerestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 33data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0.0882 | 50 | - | 2.7444 | 0.4991 |
0.1764 | 100 | - | 2.5535 | 0.6093 |
0.2646 | 150 | - | 2.3365 | 0.6761 |
0.3527 | 200 | - | 2.1920 | 0.7247 |
0.4409 | 250 | - | 2.2210 | 0.7446 |
0.5291 | 300 | - | 2.1432 | 0.7610 |
0.6173 | 350 | - | 2.2488 | 0.7769 |
0.7055 | 400 | - | 2.3736 | 0.7749 |
0.7937 | 450 | - | 2.0688 | 0.7946 |
0.8818 | 500 | 2.3647 | 2.5331 | 0.7879 |
0.9700 | 550 | - | 2.1087 | 0.7742 |
1.0582 | 600 | - | 2.1302 | 0.8068 |
1.1464 | 650 | - | 2.2669 | 0.8114 |
1.2346 | 700 | - | 2.0269 | 0.8039 |
1.3228 | 750 | - | 2.2095 | 0.8138 |
1.4109 | 800 | - | 2.5288 | 0.8190 |
1.4991 | 850 | - | 2.3442 | 0.8222 |
1.5873 | 900 | - | 2.3759 | 0.8289 |
1.6755 | 950 | - | 2.1893 | 0.8280 |
1.7637 | 1000 | 2.0682 | 2.0056 | 0.8426 |
1.8519 | 1050 | - | 2.0832 | 0.8527 |
1.9400 | 1100 | - | 2.0336 | 0.8515 |
2.0282 | 1150 | - | 2.0571 | 0.8591 |
2.1164 | 1200 | - | 2.1516 | 0.8565 |
2.2046 | 1250 | - | 2.2035 | 0.8602 |
2.2928 | 1300 | - | 2.5294 | 0.8513 |
2.3810 | 1350 | - | 2.4177 | 0.8647 |
2.4691 | 1400 | - | 2.1630 | 0.8709 |
2.5573 | 1450 | - | 2.1279 | 0.8661 |
2.6455 | 1500 | 1.678 | 2.1639 | 0.8744 |
2.7337 | 1550 | - | 2.2592 | 0.8799 |
2.8219 | 1600 | - | 2.2288 | 0.8822 |
2.9101 | 1650 | - | 2.2427 | 0.8831 |
2.9982 | 1700 | - | 2.4380 | 0.8776 |
3.0864 | 1750 | - | 2.1689 | 0.8826 |
3.1746 | 1800 | - | 1.8099 | 0.8868 |
3.2628 | 1850 | - | 2.0881 | 0.8832 |
3.3510 | 1900 | - | 2.0785 | 0.8892 |
3.4392 | 1950 | - | 2.2512 | 0.8865 |
3.5273 | 2000 | 1.2168 | 2.1249 | 0.8927 |
3.6155 | 2050 | - | 2.1179 | 0.8950 |
3.7037 | 2100 | - | 2.1932 | 0.8973 |
3.7919 | 2150 | - | 2.2628 | 0.8967 |
3.8801 | 2200 | - | 2.0764 | 0.8972 |
3.9683 | 2250 | - | 1.9575 | 0.9012 |
4.0564 | 2300 | - | 2.3302 | 0.8985 |
4.1446 | 2350 | - | 2.3008 | 0.8980 |
4.2328 | 2400 | - | 2.2886 | 0.8968 |
4.3210 | 2450 | - | 2.1694 | 0.8973 |
4.4092 | 2500 | 1.0851 | 2.1102 | 0.9010 |
4.4974 | 2550 | - | 2.2596 | 0.9021 |
4.5855 | 2600 | - | 2.1944 | 0.9019 |
4.6737 | 2650 | - | 2.0728 | 0.9029 |
4.7619 | 2700 | - | 2.4573 | 0.9031 |
4.8501 | 2750 | - | 2.2306 | 0.9057 |
4.9383 | 2800 | - | 2.2637 | 0.9068 |
5.0265 | 2850 | - | 2.5110 | 0.9068 |
5.1146 | 2900 | - | 2.6613 | 0.9042 |
5.2028 | 2950 | - | 2.4713 | 0.9070 |
5.2910 | 3000 | 0.8143 | 2.3709 | 0.9082 |
5.3792 | 3050 | - | 2.6083 | 0.9058 |
5.4674 | 3100 | - | 2.5377 | 0.9044 |
5.5556 | 3150 | - | 2.3146 | 0.9071 |
5.6437 | 3200 | - | 2.2603 | 0.9085 |
5.7319 | 3250 | - | 2.5842 | 0.9068 |
5.8201 | 3300 | - | 2.6045 | 0.9093 |
5.9083 | 3350 | - | 2.6207 | 0.9103 |
5.9965 | 3400 | - | 2.5992 | 0.9098 |
6.0847 | 3450 | - | 2.7799 | 0.9090 |
6.1728 | 3500 | 0.5704 | 2.7198 | 0.9098 |
6.2610 | 3550 | - | 2.9783 | 0.9089 |
6.3492 | 3600 | - | 2.4165 | 0.9120 |
6.4374 | 3650 | - | 2.4488 | 0.9122 |
6.5256 | 3700 | - | 2.6764 | 0.9113 |
6.6138 | 3750 | - | 2.5327 | 0.9130 |
6.7019 | 3800 | - | 2.5875 | 0.9129 |
6.7901 | 3850 | - | 2.7036 | 0.9130 |
6.8783 | 3900 | - | 2.7566 | 0.9120 |
6.9665 | 3950 | - | 2.5488 | 0.9127 |
7.0547 | 4000 | 0.4287 | 2.8512 | 0.9127 |
7.1429 | 4050 | - | 2.7361 | 0.9128 |
7.2310 | 4100 | - | 2.7434 | 0.9135 |
7.3192 | 4150 | - | 2.9410 | 0.9129 |
7.4074 | 4200 | - | 2.9452 | 0.9126 |
7.4956 | 4250 | - | 2.8665 | 0.9140 |
7.5838 | 4300 | - | 2.8215 | 0.9145 |
7.6720 | 4350 | - | 2.6978 | 0.9147 |
7.7601 | 4400 | - | 2.8445 | 0.9143 |
7.8483 | 4450 | - | 2.6041 | 0.9155 |
7.9365 | 4500 | 0.3099 | 2.7219 | 0.9155 |
8.0247 | 4550 | - | 2.7180 | 0.9160 |
8.1129 | 4600 | - | 2.6906 | 0.9160 |
8.2011 | 4650 | - | 2.8628 | 0.9156 |
8.2892 | 4700 | - | 2.7820 | 0.9158 |
8.3774 | 4750 | - | 2.8457 | 0.9157 |
8.4656 | 4800 | - | 2.7286 | 0.9160 |
8.5538 | 4850 | - | 2.7131 | 0.9164 |
8.6420 | 4900 | - | 2.8368 | 0.9165 |
8.7302 | 4950 | - | 2.8033 | 0.9167 |
8.8183 | 5000 | 0.2342 | 2.7307 | 0.9169 |
8.9065 | 5050 | - | 2.8483 | 0.9167 |
8.9947 | 5100 | - | 2.9736 | 0.9167 |
9.0829 | 5150 | - | 2.9151 | 0.9168 |
9.1711 | 5200 | - | 2.9375 | 0.9167 |
9.2593 | 5250 | - | 2.9968 | 0.9168 |
9.3474 | 5300 | - | 3.0024 | 0.9167 |
9.4356 | 5350 | - | 2.9444 | 0.9167 |
9.5238 | 5400 | - | 2.9477 | 0.9167 |
9.6120 | 5450 | - | 2.9205 | 0.9168 |
9.7002 | 5500 | 0.1639 | 2.9286 | 0.9167 |
9.7884 | 5550 | - | 2.9421 | 0.9168 |
9.8765 | 5600 | - | 2.9733 | 0.9168 |
9.9647 | 5650 | - | 2.9777 | 0.9169 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}