sgonzalezsilot's picture
End of training
b247398 verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: whisper-tiny-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.91

whisper-tiny-finetuned-gtzan

This model is a fine-tuned version of openai/whisper-tiny on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6142
  • Accuracy: 0.91

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7559 1.0 113 1.6022 0.57
0.9793 2.0 226 0.9895 0.7
0.8508 3.0 339 0.6379 0.78
0.5114 4.0 452 0.8367 0.72
0.115 5.0 565 0.4465 0.88
0.0239 6.0 678 0.5796 0.85
0.2095 7.0 791 0.6141 0.87
0.0019 8.0 904 0.5765 0.88
0.0012 9.0 1017 0.5393 0.87
0.0013 10.0 1130 0.5126 0.92
0.0008 11.0 1243 0.4751 0.91
0.0006 12.0 1356 0.5002 0.91
0.0005 13.0 1469 0.4905 0.91
0.0006 14.0 1582 0.5577 0.91
0.0004 15.0 1695 0.6326 0.9
0.0004 16.0 1808 0.6188 0.92
0.0004 17.0 1921 0.6420 0.91
0.0003 18.0 2034 0.5999 0.91
0.0003 19.0 2147 0.6105 0.91
0.0003 20.0 2260 0.6142 0.91

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.2
  • Tokenizers 0.19.1