DQN Agent playing BreakoutNoFrameskip-v4
This is a trained model of a DQN agent playing BreakoutNoFrameskip-v4 using the /sgoodfriend/rl-algo-impls repo.
All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/v7d6z818.
Training Results
This model was trained from 3 trainings of DQN agents using different initial seeds. These agents were trained by checking out e8bc541. The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).
algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url |
---|---|---|---|---|---|---|---|
dqn | BreakoutNoFrameskip-v4 | 1 | 417.562 | 10.7701 | 16 | wandb | |
dqn | BreakoutNoFrameskip-v4 | 2 | 424.812 | 6.5021 | 16 | * | wandb |
dqn | BreakoutNoFrameskip-v4 | 3 | 418.188 | 5.31764 | 16 | wandb |
Prerequisites: Weights & Biases (WandB)
Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB.
Before doing anything below, you'll need to create a wandb account and run wandb login
.
Usage
/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls
Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: e8bc541.
# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/96fol4v1
Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the colab_enjoy.ipynb notebook.
Training
If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: e8bc541. While training is deterministic, different hardware will give different results.
python train.py --algo dqn --env BreakoutNoFrameskip-v4 --seed 2
Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the colab_train.ipynb notebook.
Benchmarking (with Lambda Labs instance)
This and other models from https://api.wandb.ai/links/sgoodfriend/v7d6z818 were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal:
git clone git@github.com:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh
Alternative: Google Colab Pro+
As an alternative, colab_benchmark.ipynb, can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit.
Hyperparameters
This isn't exactly the format of hyperparams in hyperparams/dqn.yml, but instead the Wandb Run Config. However, it's very close and has some additional data:
algo: dqn
algo_hyperparams:
batch_size: 32
buffer_size: 100000
exploration_final_eps: 0.01
exploration_fraction: 0.1
gradient_steps: 2
learning_rate: 0.0001
learning_starts: 100000
target_update_interval: 1000
train_freq: 8
env: impala-BreakoutNoFrameskip-v4
env_hyperparams:
frame_stack: 4
n_envs: 8
no_reward_fire_steps: 500
no_reward_timeout_steps: 1000
vec_env_class: subproc
env_id: BreakoutNoFrameskip-v4
eval_params:
deterministic: false
n_timesteps: 10000000
policy_hyperparams:
cnn_feature_dim: 256
cnn_layers_init_orthogonal: false
cnn_style: impala
init_layers_orthogonal: true
seed: 2
use_deterministic_algorithms: true
wandb_entity: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_e8bc541
- host_192-9-228-51
Evaluation results
- mean_reward on BreakoutNoFrameskip-v4self-reported424.81 +/- 6.5