metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: bert-base-cased
model-index:
- name: glue-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8553921568627451
name: Accuracy
- type: f1
value: 0.897391304347826
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8553921568627451
name: Accuracy
verified: true
- type: precision
value: 0.8716216216216216
name: Precision
verified: true
- type: recall
value: 0.9247311827956989
name: Recall
verified: true
- type: auc
value: 0.90464282737351
name: AUC
verified: true
- type: f1
value: 0.897391304347826
name: F1
verified: true
- type: loss
value: 0.6564616560935974
name: loss
verified: true
glue-mrpc
This model is a fine-tuned version of bert-base-cased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.6566
- Accuracy: 0.8554
- F1: 0.8974
- Combined Score: 0.8764
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3