Edit model card

Beyonder-4x7b

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

base_model: openchat/openchat-3.5-1210
gate_mode: hidden
experts:
  - source_model: openchat/openchat-3.5-1210
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    negative_prompts:
    - "storywriting"
    - "mathematics"
    - "reasoning"
    - "code"
    - "programming"
  - source_model: beowolx/CodeNinja-1.0-OpenChat-7B
    positive_prompts:
    - "code"
    - "python"
    - "javascript"
    - "programming"
    - "algorithm"
    negative_prompts:
    - "chat"
    - "assistant"
    - "storywriting"
    - "mathematics"
    - "reasoning"
  - source_model: maywell/PiVoT-0.1-Starling-LM-RP
    positive_prompts:
    - "storywriting"
    - "write"
    - "scene"
    - "story"
    - "character"
    negative_prompts:
    - "chat"
    - "assistant"
    - "code"
    - "programming"
    - "mathematics"
    - "reasoning"
  - source_model: WizardLM/WizardMath-7B-V1.1
    positive_prompts:
    - "reason"
    - "math"
    - "mathematics"
    - "solve"
    - "count"
    negative_prompts:
    - "chat"
    - "assistant"
    - "code"
    - "programming"
    - "storywriting"

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Beyonder-4x7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Output:

A Mixture of Experts (MoE) is a neural network architecture that combines the strengths of multiple expert networks to make predictions. It leverages the idea of ensemble learning, where multiple models work together to improve performance. In each MoE, a gating network is used to select the most relevant expert for the input. The final output is a weighted combination of the expert outputs, determined by the gating network's predictions.
Downloads last month
1,299
Safetensors
Model size
24.2B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.