gbert-large-finetuned-cust
This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8251 | 1.0 | 157 | 0.5204 |
0.508 | 2.0 | 314 | 0.3953 |
0.4009 | 3.0 | 471 | 0.3242 |
0.3587 | 4.0 | 628 | 0.3300 |
0.3276 | 5.0 | 785 | 0.3137 |
0.302 | 6.0 | 942 | 0.2826 |
0.2777 | 7.0 | 1099 | 0.2768 |
0.2609 | 8.0 | 1256 | 0.2726 |
0.244 | 9.0 | 1413 | 0.2660 |
0.2274 | 10.0 | 1570 | 0.2391 |
0.2132 | 11.0 | 1727 | 0.2353 |
0.2014 | 12.0 | 1884 | 0.2134 |
0.1835 | 13.0 | 2041 | 0.2278 |
0.1896 | 14.0 | 2198 | 0.2110 |
0.1974 | 15.0 | 2355 | 0.2132 |
0.1775 | 16.0 | 2512 | 0.1973 |
0.1715 | 17.0 | 2669 | 0.1941 |
0.1777 | 18.0 | 2826 | 0.2105 |
0.1741 | 19.0 | 2983 | 0.2127 |
0.1607 | 20.0 | 3140 | 0.1762 |
0.1562 | 21.0 | 3297 | 0.2095 |
0.1548 | 22.0 | 3454 | 0.1805 |
0.1534 | 23.0 | 3611 | 0.1852 |
0.1484 | 24.0 | 3768 | 0.1773 |
0.1473 | 25.0 | 3925 | 0.1759 |
0.1354 | 26.0 | 4082 | 0.1734 |
0.136 | 27.0 | 4239 | 0.1902 |
0.1306 | 28.0 | 4396 | 0.1769 |
0.1353 | 29.0 | 4553 | 0.1705 |
0.1368 | 30.0 | 4710 | 0.1846 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.