YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Multiple Prediction Heads

  • ExtractiveQA Head
  • Three Class Classification Head, classes => (yes, no, extra_qa) to answer binary questions or direct to ExtractiveQA Head

BoolQ Validation dataset Evaluation:

support => 3270
accuracy => 0.73
macro f1 => 0.71

SQuAD Validation dataset Evaluation:

eval_HasAns_exact = 78.0196
eval_HasAns_f1 = 84.0327
eval_HasAns_total = 5928
eval_NoAns_exact = 81.8167
eval_NoAns_f1 = 81.8167
eval_NoAns_total = 5945
eval_best_exact = 79.9208
eval_best_f1 = 82.9231
eval_exact = 79.9208
eval_f1 = 82.9231
eval_samples = 12165
eval_total = 11873

Uasge in transformers

Import the script from here

from multitask_model import RobertaForMultitaskQA
from transformers import RobertaTokenizerFast
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RobertaForMultitaskQA.from_pretrained(
        "shahrukhx01/roberta-base-squad2-boolq-baseline",
        task_labels_map={"squad_v2": 2, "boolq": 3},
    ).to(device)
tokenizer = RobertaTokenizerFast.from_pretrained("shahrukhx01/roberta-base-squad2-boolq-baseline")
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.