xls-r-300m-dv / README.md
shahukareem's picture
update model card README.md
d4582e9
|
raw
history blame
6.01 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice
model-index:
  - name: xls-r-300m-dv
    results: []

xls-r-300m-dv

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3149
  • Wer: 0.2947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.9617 0.66 400 1.4251 0.9768
0.9081 1.33 800 0.6068 0.7290
0.6575 1.99 1200 0.4700 0.6234
0.548 2.65 1600 0.4158 0.5868
0.5031 3.32 2000 0.4067 0.5728
0.4792 3.98 2400 0.3965 0.5673
0.4344 4.64 2800 0.3862 0.5383
0.4237 5.31 3200 0.3794 0.5316
0.3984 5.97 3600 0.3395 0.5177
0.3788 6.63 4000 0.3528 0.5329
0.3685 7.3 4400 0.3404 0.5060
0.3535 7.96 4800 0.3425 0.5069
0.3391 8.62 5200 0.3576 0.5118
0.331 9.29 5600 0.3259 0.4783
0.3192 9.95 6000 0.3145 0.4794
0.2956 10.61 6400 0.3111 0.4650
0.2936 11.28 6800 0.3303 0.4741
0.2868 11.94 7200 0.3109 0.4597
0.2743 12.6 7600 0.3191 0.4557
0.2654 13.27 8000 0.3286 0.4570
0.2556 13.93 8400 0.3186 0.4468
0.2452 14.59 8800 0.3405 0.4582
0.241 15.26 9200 0.3418 0.4533
0.2313 15.92 9600 0.3388 0.4405
0.2234 16.58 10000 0.3659 0.4421
0.2194 17.25 10400 0.3559 0.4490
0.2168 17.91 10800 0.3452 0.4355
0.2036 18.57 11200 0.3496 0.4259
0.2046 19.24 11600 0.3282 0.4245
0.1917 19.9 12000 0.3201 0.4052
0.1908 20.56 12400 0.3439 0.4165
0.1838 21.23 12800 0.3165 0.3950
0.1828 21.89 13200 0.3332 0.4079
0.1774 22.55 13600 0.3485 0.4072
0.1776 23.22 14000 0.3308 0.3868
0.1693 23.88 14400 0.3153 0.3906
0.1656 24.54 14800 0.3408 0.3899
0.1629 25.21 15200 0.3333 0.3854
0.164 25.87 15600 0.3172 0.3775
0.1505 26.53 16000 0.3105 0.3777
0.1524 27.2 16400 0.3136 0.3726
0.1482 27.86 16800 0.3110 0.3710
0.1423 28.52 17200 0.3299 0.3687
0.1419 29.19 17600 0.3271 0.3645
0.135 29.85 18000 0.3333 0.3638
0.1319 30.51 18400 0.3272 0.3640
0.131 31.18 18800 0.3438 0.3636
0.1252 31.84 19200 0.3266 0.3557
0.1238 32.5 19600 0.3195 0.3516
0.1203 33.17 20000 0.3405 0.3534
0.1159 33.83 20400 0.3287 0.3509
0.115 34.49 20800 0.3474 0.3433
0.108 35.16 21200 0.3245 0.3381
0.1091 35.82 21600 0.3185 0.3448
0.1043 36.48 22000 0.3309 0.3363
0.1034 37.15 22400 0.3288 0.3349
0.1015 37.81 22800 0.3222 0.3284
0.0953 38.47 23200 0.3272 0.3315
0.0966 39.14 23600 0.3196 0.3239
0.0938 39.8 24000 0.3199 0.3280
0.0905 40.46 24400 0.3193 0.3166
0.0893 41.13 24800 0.3224 0.3222
0.0858 41.79 25200 0.3216 0.3142
0.0839 42.45 25600 0.3241 0.3135
0.0819 43.12 26000 0.3260 0.3071
0.0782 43.78 26400 0.3202 0.3075
0.0775 44.44 26800 0.3140 0.3067
0.0751 45.11 27200 0.3118 0.3020
0.0736 45.77 27600 0.3155 0.2976
0.071 46.43 28000 0.3105 0.2998
0.0715 47.1 28400 0.3065 0.2993
0.0668 47.76 28800 0.3161 0.2972
0.0698 48.42 29200 0.3137 0.2967
0.0681 49.09 29600 0.3130 0.2971
0.0651 49.75 30000 0.3149 0.2947

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0