Edit model card

To Use The Model

from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor

   from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor

   model = LayoutLMForTokenClassification.from_pretrained("shaikhadil26/layoutlm-sroie")
   processor = LayoutLMv2Processor.from_pretrained("shaikhadil26/layoutlm-sroie")

layoutlm-sroie

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0732
  • Address: {'precision': 0.9800577276305432, 'recall': 0.9813452443510247, 'f1': 0.9807010634107917, 'number': 3806}
  • Company: {'precision': 0.9241157556270096, 'recall': 0.9862731640356898, 'f1': 0.9541832669322708, 'number': 1457}
  • Date: {'precision': 0.9520383693045563, 'recall': 0.9706601466992665, 'f1': 0.9612590799031476, 'number': 409}
  • Total: {'precision': 0.6638888888888889, 'recall': 0.6675977653631285, 'f1': 0.6657381615598885, 'number': 358}
  • Overall Precision: 0.9455
  • Overall Recall: 0.9632
  • Overall F1: 0.9542
  • Overall Accuracy: 0.9863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Address Company Date Total Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4342 1.0 40 0.0876 {'precision': 0.974816369359916, 'recall': 0.976353126642144, 'f1': 0.9755841428196377, 'number': 3806} {'precision': 0.8865598027127004, 'recall': 0.9869595058339052, 'f1': 0.9340695030854174, 'number': 1457} {'precision': 0.8112449799196787, 'recall': 0.9877750611246944, 'f1': 0.8908489525909592, 'number': 409} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 358} 0.9370 0.9217 0.9293 0.9794
0.0586 2.0 80 0.0591 {'precision': 0.9761780104712042, 'recall': 0.9797687861271677, 'f1': 0.977970102281668, 'number': 3806} {'precision': 0.9187301587301587, 'recall': 0.9931365820178449, 'f1': 0.954485488126649, 'number': 1457} {'precision': 0.8975501113585747, 'recall': 0.9853300733496333, 'f1': 0.9393939393939394, 'number': 409} {'precision': 0.7073170731707317, 'recall': 0.40502793296089384, 'f1': 0.5150976909413854, 'number': 358} 0.9463 0.9493 0.9478 0.9844
0.039 3.0 120 0.0569 {'precision': 0.975006508721687, 'recall': 0.9839726747241198, 'f1': 0.9794690728390218, 'number': 3806} {'precision': 0.9282970550576184, 'recall': 0.9951956074124915, 'f1': 0.9605829744948658, 'number': 1457} {'precision': 0.9232558139534883, 'recall': 0.9706601466992665, 'f1': 0.9463647199046483, 'number': 409} {'precision': 0.6103542234332425, 'recall': 0.6256983240223464, 'f1': 0.6179310344827587, 'number': 358} 0.9381 0.9645 0.9511 0.9852
0.0312 4.0 160 0.0546 {'precision': 0.9765135699373695, 'recall': 0.9831844456121913, 'f1': 0.9798376538360828, 'number': 3806} {'precision': 0.9276105060858424, 'recall': 0.9938229238160604, 'f1': 0.9595758780649436, 'number': 1457} {'precision': 0.9473684210526315, 'recall': 0.9682151589242054, 'f1': 0.9576783555018137, 'number': 409} {'precision': 0.6116504854368932, 'recall': 0.7039106145251397, 'f1': 0.6545454545454545, 'number': 358} 0.9381 0.9682 0.9529 0.9858
0.0246 5.0 200 0.0555 {'precision': 0.9772430028773215, 'recall': 0.9816079873883342, 'f1': 0.9794206317997116, 'number': 3806} {'precision': 0.9298132646490663, 'recall': 0.9910775566231984, 'f1': 0.959468438538206, 'number': 1457} {'precision': 0.9537712895377128, 'recall': 0.9584352078239609, 'f1': 0.9560975609756097, 'number': 409} {'precision': 0.6434108527131783, 'recall': 0.6955307262569832, 'f1': 0.6684563758389261, 'number': 358} 0.9428 0.9653 0.9539 0.9861
0.0206 6.0 240 0.0531 {'precision': 0.9782893015956056, 'recall': 0.9826589595375722, 'f1': 0.9804692620264778, 'number': 3806} {'precision': 0.9414088215931534, 'recall': 0.9814687714481812, 'f1': 0.9610215053763441, 'number': 1457} {'precision': 0.9628712871287128, 'recall': 0.9511002444987775, 'f1': 0.956949569495695, 'number': 409} {'precision': 0.6811594202898551, 'recall': 0.6564245810055865, 'f1': 0.6685633001422475, 'number': 358} 0.9512 0.9609 0.9560 0.9868
0.0166 7.0 280 0.0579 {'precision': 0.9767987486965589, 'recall': 0.9844981607987389, 'f1': 0.9806333420570532, 'number': 3806} {'precision': 0.9272844272844273, 'recall': 0.9890185312285518, 'f1': 0.9571570906675522, 'number': 1457} {'precision': 0.9562043795620438, 'recall': 0.960880195599022, 'f1': 0.9585365853658536, 'number': 409} {'precision': 0.6685236768802229, 'recall': 0.6703910614525139, 'f1': 0.6694560669456067, 'number': 358} 0.9450 0.9653 0.9550 0.9865
0.014 8.0 320 0.0614 {'precision': 0.9785396493064643, 'recall': 0.9823962165002628, 'f1': 0.9804641405532976, 'number': 3806} {'precision': 0.9277885235332044, 'recall': 0.9876458476321208, 'f1': 0.9567819148936171, 'number': 1457} {'precision': 0.9585365853658536, 'recall': 0.960880195599022, 'f1': 0.9597069597069597, 'number': 409} {'precision': 0.6553524804177546, 'recall': 0.7011173184357542, 'f1': 0.6774628879892037, 'number': 358} 0.9444 0.9655 0.9548 0.9865
0.0115 9.0 360 0.0642 {'precision': 0.9800524934383202, 'recall': 0.9810825013137152, 'f1': 0.9805672268907565, 'number': 3806} {'precision': 0.9342875731945348, 'recall': 0.9855868222374743, 'f1': 0.9592518370073482, 'number': 1457} {'precision': 0.9527186761229315, 'recall': 0.9853300733496333, 'f1': 0.9687500000000001, 'number': 409} {'precision': 0.6483516483516484, 'recall': 0.659217877094972, 'f1': 0.6537396121883657, 'number': 358} 0.9470 0.9633 0.9551 0.9865
0.0103 10.0 400 0.0684 {'precision': 0.9808197582764057, 'recall': 0.9808197582764057, 'f1': 0.9808197582764057, 'number': 3806} {'precision': 0.9224358974358975, 'recall': 0.9876458476321208, 'f1': 0.9539277427908518, 'number': 1457} {'precision': 0.9519230769230769, 'recall': 0.9682151589242054, 'f1': 0.96, 'number': 409} {'precision': 0.6473684210526316, 'recall': 0.6871508379888268, 'f1': 0.6666666666666667, 'number': 358} 0.9435 0.9642 0.9537 0.9861
0.0084 11.0 440 0.0704 {'precision': 0.981325618095739, 'recall': 0.9802942722017867, 'f1': 0.9808096740273397, 'number': 3806} {'precision': 0.9265463917525774, 'recall': 0.9869595058339052, 'f1': 0.9557992688600864, 'number': 1457} {'precision': 0.9519230769230769, 'recall': 0.9682151589242054, 'f1': 0.96, 'number': 409} {'precision': 0.6497326203208557, 'recall': 0.6787709497206704, 'f1': 0.6639344262295083, 'number': 358} 0.9453 0.9632 0.9542 0.9863
0.0077 12.0 480 0.0704 {'precision': 0.9805672268907563, 'recall': 0.9810825013137152, 'f1': 0.9808247964276333, 'number': 3806} {'precision': 0.931950745301361, 'recall': 0.9869595058339052, 'f1': 0.9586666666666667, 'number': 1457} {'precision': 0.9544364508393285, 'recall': 0.9731051344743277, 'f1': 0.963680387409201, 'number': 409} {'precision': 0.6764705882352942, 'recall': 0.6424581005586593, 'f1': 0.6590257879656161, 'number': 358} 0.9496 0.9619 0.9557 0.9867
0.0075 13.0 520 0.0728 {'precision': 0.9792976939203354, 'recall': 0.9818707304256438, 'f1': 0.9805825242718447, 'number': 3806} {'precision': 0.9258542875564152, 'recall': 0.9855868222374743, 'f1': 0.9547872340425532, 'number': 1457} {'precision': 0.9538834951456311, 'recall': 0.960880195599022, 'f1': 0.9573690621193666, 'number': 409} {'precision': 0.6502732240437158, 'recall': 0.664804469273743, 'f1': 0.6574585635359116, 'number': 358} 0.9445 0.9625 0.9534 0.9861
0.0068 14.0 560 0.0732 {'precision': 0.9805723286951956, 'recall': 0.9813452443510247, 'f1': 0.9809586342744582, 'number': 3806} {'precision': 0.9229287090558767, 'recall': 0.9862731640356898, 'f1': 0.953550099535501, 'number': 1457} {'precision': 0.9520383693045563, 'recall': 0.9706601466992665, 'f1': 0.9612590799031476, 'number': 409} {'precision': 0.667590027700831, 'recall': 0.6731843575418994, 'f1': 0.6703755215577191, 'number': 358} 0.9456 0.9635 0.9545 0.9864
0.0066 15.0 600 0.0732 {'precision': 0.9800577276305432, 'recall': 0.9813452443510247, 'f1': 0.9807010634107917, 'number': 3806} {'precision': 0.9241157556270096, 'recall': 0.9862731640356898, 'f1': 0.9541832669322708, 'number': 1457} {'precision': 0.9520383693045563, 'recall': 0.9706601466992665, 'f1': 0.9612590799031476, 'number': 409} {'precision': 0.6638888888888889, 'recall': 0.6675977653631285, 'f1': 0.6657381615598885, 'number': 358} 0.9455 0.9632 0.9542 0.9863

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
152
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shaikhadil26/layoutlm-sroie

Finetuned
(135)
this model