File size: 2,083 Bytes
49afdbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
model-index:
- name: aoi_clip_clean_new_sampler
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/5wmznry9)
# aoi_clip_clean_new_sampler
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 40
- eval_batch_size: 44
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 120.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 2.3088 | 12.0 | 17748 | 3.1875 |
| 2.0566 | 24.0 | 35496 | 3.3424 |
| 1.9815 | 36.0 | 53244 | 3.4545 |
| 1.9566 | 48.0 | 70992 | 3.5668 |
| 1.9488 | 60.0 | 88740 | 3.5229 |
| 1.9424 | 72.0 | 106488 | 3.6771 |
| 1.9411 | 84.0 | 124236 | 3.7868 |
| 1.9388 | 96.0 | 141984 | 3.7067 |
| 1.9352 | 108.0 | 159732 | 3.8508 |
| 1.9318 | 120.0 | 177480 | 3.8199 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|