metadata
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aoi_clip_high_resolution_concate_fusin_crop_each_text
results: []
aoi_clip_high_resolution_concate_fusin_crop_each_text
This model is a fine-tuned version of OFA-Sys/chinese-clip-vit-base-patch16 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.4957
- Accuracy: 0.0648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7286 | 5.9821 | 1602 | 3.0151 | 0.0654 |
1.6207 | 11.9642 | 3204 | 3.2376 | 0.0665 |
1.5399 | 17.9462 | 4806 | 3.2386 | 0.0685 |
1.4981 | 23.9283 | 6408 | 3.3545 | 0.0673 |
1.4774 | 29.9104 | 8010 | 3.3404 | 0.0677 |
1.4648 | 35.8925 | 9612 | 3.4236 | 0.0670 |
1.4549 | 41.8745 | 11214 | 3.4689 | 0.0664 |
1.4528 | 47.8566 | 12816 | 3.5205 | 0.0659 |
1.4538 | 53.8387 | 14418 | 3.4703 | 0.0655 |
1.4519 | 59.8208 | 16020 | 3.4957 | 0.0651 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1