Visualize in Weights & Biases

clip-DIT-finetuned_one_text_to_train

This model is a fine-tuned version of ckiplab/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3237

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 100
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200.0

Training results

Training Loss Epoch Step Validation Loss
2.479 20.0 780 2.5238
0.5415 40.0 1560 1.9513
0.1937 60.0 2340 1.6752
0.1072 80.0 3120 1.5576
0.0722 100.0 3900 1.4878
0.0542 120.0 4680 1.4187
0.0433 140.0 5460 1.3938
0.0376 160.0 6240 1.3544
0.0333 180.0 7020 1.3325
0.0311 200.0 7800 1.3237

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
189M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for sharkMeow/clip-DIT-finetuned_one_text_to_train

Finetuned
(12)
this model