|
--- |
|
base_model: OFA-Sys/chinese-clip-vit-base-patch16 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: sentance_split_by_time_ocr_concate_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/skkco61i) |
|
# sentance_split_by_time_ocr_concate_2 |
|
|
|
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.7759 |
|
- Accuracy: 0.0760 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 25 |
|
- eval_batch_size: 20 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 200 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 60.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:-----:|:---------------:|:--------:| |
|
| 2.077 | 5.9928 | 1866 | 3.0593 | 0.0767 | |
|
| 1.8747 | 11.9855 | 3732 | 3.1969 | 0.0788 | |
|
| 1.7613 | 17.9783 | 5598 | 3.2275 | 0.0782 | |
|
| 1.703 | 23.9711 | 7464 | 3.3677 | 0.0788 | |
|
| 1.676 | 29.9639 | 9330 | 3.4368 | 0.0784 | |
|
| 1.6495 | 35.9566 | 11196 | 3.5520 | 0.0783 | |
|
| 1.6449 | 41.9494 | 13062 | 3.5562 | 0.0781 | |
|
| 1.6293 | 47.9422 | 14928 | 3.6218 | 0.0775 | |
|
| 1.6301 | 53.9350 | 16794 | 3.7435 | 0.0770 | |
|
| 1.6232 | 59.9277 | 18660 | 3.7759 | 0.0765 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|