This repo reproduced tloen/alpaca-lora-7b fit on the Stanford Alpaca dataset.

4x H100 training for about 1h15min, details in W&B link, there is a hyperparameter of val_set_size=500

4 x 4090 training for about 4h35min, details in W&B link, all key hyperparameters are the same

To optimize the running speed, I change these code

  • load_in_8bits=False to use 16bit finetune
  • comment model = prepare_model_for_int8_training to not turn some parameters to fp32 and turn off gradient checkpointing
  • for 4090 enable gradient checkpointing, add model.gradient_checkpointing_enable() and model.enable_input_require_grads()

This version of the weights was trained with the following hyperparameters:

  • Epochs: 10 (load from best epoch)
  • Batch size: 128
  • Cutoff length: 512
  • Learning rate: 3e-4
  • Lora r: 16
  • Lora target modules: q_proj, k_proj, v_proj, o_proj

That is:

python finetune.py \
    --base_model='decapoda-research/llama-7b-hf' \
    --num_epochs=10 \
    --cutoff_len=512 \
    --group_by_length \
    --val_set_size=500 \
    --output_dir='./alpaca-lora-train-H100-80G-HBM3x4-mb8' \
    --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
    --lora_r=16 \
    --micro_batch_size=8 \
    --train_in_8bit False

Instructions for running it can be found at https://github.com/tloen/alpaca-lora.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train sharpbai/alpaca-lora-7b-reproduced